Does right hemisphere superiority sufficiently explain the left visual field advantage in face recognition?
- 37 Downloads
Abstract
The tendency to perceive the identity of the left half of a centrally viewed face more strongly than that of the right half is associated with visual processing of faces in the right hemisphere (RH). Here we investigate conditions under which this well-known left visual field (LVF) half-face advantage fails to occur. Our findings challenge the sufficiency of its explanation as a function of RH specialization for face processing coupled with LVF-RH correspondence. In two experiments we show that the LVF half-face advantage occurs for normal faces and chimeric faces composed of different half-face identities. In a third experiment, we show that face inversion disrupts the LVF half-face advantage. In two additional experiments we show that half-faces viewed in isolation or paired with inverted half-faces fail to show the LVF advantage. Consistent with previous explanations of the LVF half-face advantage, our findings suggest that the LVF half-face advantage reflects RH superiority for processing faces and direct transfer of LVF face information to visual cortex in the RH. Critically, however, our findings also suggest the operation of a third factor, which involves the prioritization of face-processing resources to the LVF, but only when two upright face-halves compete for these resources. We therefore conclude that RH superiority alone does not suffice to explain the LVF advantage in face recognition. We also discuss the implications of our findings for specialized visual processing of faces by the right hemisphere, and we distinguish LVF advantages for faces viewed centrally and peripherally in divided field studies.
Keywords
Face recognition Hemispheric specialization Visual field bias Holistic processing Visual perceptionNotes
References
- Bartlett, J. C., Searcy, J. H., & Abdi, H. (2003). What are the routes to face recognition? In M. A. Peterson & G. Rhodes (Eds.), Advances in visual cognition. Perception of faces, objects, and scenes: Analytic and holistic processes (pp. 21–47). New York: Oxford University Press.Google Scholar
- Barton, J. J. S., Keenan, J. P., & Bass, T. (2001). Discrimination of spatial relations and features in faces: Effects of inversion and viewing duration. British Journal of Psychology, 92(3), 527–549. https://doi.org/10.1348/000712601162329 CrossRefPubMedGoogle Scholar
- Beaumont, J. G. (1983). Methods for Studying Cerebral Hemispheric Function. In Functions of the Right Cerebral Hemisphere (pp. 113–146). Elsevier. https://doi.org/10.1016/B978-0-12-773250-3.50009-7 CrossRefGoogle Scholar
- Boremanse, A., Norcia, A. M., & Rossion, B. (2013). An objective signature for visual binding of face parts in the human brain. Journal of Vision, 13(11), 6–6. https://doi.org/10.1167/13.11.6 CrossRefPubMedGoogle Scholar
- Boremanse, A., Norcia, A. M., & Rossion, B. (2014). Dissociation of part-based and integrated neural responses to faces by means of electroencephalographic frequency tagging. European Journal of Neuroscience, 40(6), 2987–2997. https://doi.org/10.1111/ejn.12663 CrossRefPubMedGoogle Scholar
- Bourne, V. J. (2006). The divided visual field paradigm: Methodological considerations. Laterality, 11(4), 373–393. https://doi.org/10.1080/13576500600633982 CrossRefPubMedGoogle Scholar
- Bourne, V. J. (2008). Chimeric faces, visual field bias, and reaction time bias: Have we been missing a trick? Laterality: Asymmetries of Body, Brain and Cognition, 13(1), 92–103. https://doi.org/10.1080/13576500701754315 CrossRefGoogle Scholar
- Bourne, V. J. (2011). Examining the effects of inversion on lateralisation for processing facial emotion. Cortex, 47(6), 690–695. https://doi.org/10.1016/j.cortex.2010.04.003 CrossRefPubMedGoogle Scholar
- Brady, N., Campbell, M., & Flaherty, M. (2005). Perceptual asymmetries are preserved in memory for highly familiar faces of self and friend. Brain and Cognition, 58(3), 334–342. https://doi.org/10.1016/j.bandc.2005.01.001 CrossRefPubMedGoogle Scholar
- Brainard, D. H. (1997). The Psychophysics Toolbox. Spatial Vision, 10(4), 433–436. https://doi.org/10.1163/156856897X00357 CrossRefPubMedPubMedCentralGoogle Scholar
- Bukowski, H., Dricot, L., Hanseeuw, B., & Rossion, B. (2013). Cerebral lateralization of face-sensitive areas in left-handers: Only the FFA does not get it right. Cortex, 49(9), 2583–2589. https://doi.org/10.1016/j.cortex.2013.05.002 CrossRefPubMedGoogle Scholar
- Burt, D. M., & Perrett, D. I. (1997). Perceptual asymmetries in judgements of facial attractiveness, age, gender, speech and expression. Neuropsychologia, 35(5), 685–693. https://doi.org/10.1016/S0028-3932(96)00111-X CrossRefPubMedGoogle Scholar
- Butler, S. H., & Harvey, M. (2005). Does inversion abolish the left chimeric face processing advantage? Neuroreport, 16(18), 1991–1993. https://doi.org/10.1097/00001756-200512190-00004 CrossRefPubMedGoogle Scholar
- Cattaneo, Z., Renzi, C., Bona, S., Merabet, L. B., Carbon, C.-C. C., & Vecchi, T. (2014). Hemispheric asymmetry in discriminating faces differing for featural or configural (second-order relations) aspects. Psychonomic Bulletin and Review, 21(2), 363–369. https://doi.org/10.3758/s13423-013-0484-2 CrossRefPubMedGoogle Scholar
- Cheung, O. S., Richler, J. J., Palmeri, T. J., & Gauthier, I. (2008). Revisiting the Role of Spatial Frequencies in the Holistic Processing of Faces. Journal of Experimental Psychology: Human Perception and Performance, 34(6), 1327–1336. https://doi.org/10.1037/a0011752 CrossRefPubMedGoogle Scholar
- Chua, K. W., & Gauthier, I. (2016). Category-specific learned attentional bias to object parts. Attention, Perception, & Psychophysics, 78(1), 44–51. https://doi.org/10.3758/s13414-015-1040-0 CrossRefGoogle Scholar
- Chua, K. W., Richler, J. J., & Gauthier, I. (2014). Becoming a lunari or taiyo expert: Learned attention to parts drives holistic processing of faces. Journal of Experimental Psychology: Human Perception and Performance, 40(3), 1174–1182. https://doi.org/10.1037/a0035895 CrossRefPubMedGoogle Scholar
- Chua, K. W., Richler, J. J., & Gauthier, I. (2015). Holistic processing from learned attention to parts. Journal of Experimental Psychology: General, 144(4), 723–729. https://doi.org/10.1037/xge0000063 CrossRefGoogle Scholar
- Cohen, J. (1988). Statistical power for the social sciences. Hillsdale, NJ: Laurence Erlbaum and Associates.Google Scholar
- Collishaw, S. M., & Hole, G. J. (2000). Featural and Configurational Processes in the Recognition of Faces of Different Familiarity. Perception, 29(8), 893–909. https://doi.org/10.1068/p2949 CrossRefPubMedGoogle Scholar
- Coolican, J., Eskes, G. A., McMullen, P. A., & Lecky, E. (2008). Perceptual biases in processing facial identity and emotion. Brain and Cognition, 66(2), 176–187. https://doi.org/10.1016/j.bandc.2007.07.001 CrossRefPubMedGoogle Scholar
- Diamond, R., & Carey, S. (1986). Why faces are and are not special: An effect of expertise. Journal of Experimental Psychology: General, 115(2), 107–117. https://doi.org/10.1037//0096-3445.115.2.107 CrossRefGoogle Scholar
- Dundas, E. M., Plaut, D. C., & Behrmann, M. (2013). The joint development of hemispheric lateralization for words and faces. Journal of Experimental Psychology. General, 142(2), 348–358. https://doi.org/10.1037/a0029503 CrossRefPubMedGoogle Scholar
- Dundas, E. M., Plaut, D. C., & Behrmann, M. (2015). Variable left-hemisphere language and orthographic lateralization reduces right-hemisphere face lateralization. Journal of Cognitive Neuroscience, 27(5), 913–925. https://doi.org/10.1162/jocn_a_00757 CrossRefPubMedGoogle Scholar
- Farah, M. J., Tanaka, J. W., & Drain, H. M. (1995). What causes the face inversion effect? Journal of Experimental Psychology: Human Perception and Performance, 21(3), 628–634. https://doi.org/10.1037/0096-1523.21.3.628 CrossRefPubMedGoogle Scholar
- Faul, F., Erdfelder, E., Buchner, A., & Lang, A. G. (2009). Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41(4), 1149–1160. https://doi.org/10.3758/BRM.41.4.1149 CrossRefPubMedGoogle Scholar
- Freire, A., Lee, K., & Symons, L. A. (2000). The face-inversion effect as a deficit in the encoding of configurai information: Direct evidence. Perception, 29(2), 159–170. https://doi.org/10.1068/p3012 CrossRefPubMedGoogle Scholar
- Gauthier, I., Tarr, M. J., Anderson, A. W., Skudlarski, P., & Gore, J. C. (1999). Activation of the middle fusiform “face area” increases with expertise in recognizing novel objects. Nature Neuroscience, 2(6), 568–573. https://doi.org/10.1038/9224 CrossRefPubMedGoogle Scholar
- Gentile, F., & Jansma, B. M. (2010). Neural competition through visual similarity in face selection. Brain Research, 1351, 172–184. https://doi.org/10.1016/j.brainres.2010.06.050 CrossRefPubMedGoogle Scholar
- Gentile, F., & Jansma, B. M. (2012). Temporal dynamics of face selection mechanism in the context of similar and dissimilar faces: ERP evidence for biased competition within the ventral occipito-temporal cortex using ICA. NeuroImage, 59(1), 682–694. https://doi.org/10.1016/j.neuroimage.2011.07.018 CrossRefPubMedGoogle Scholar
- Gilbert, C., & Bakan, P. (1973). Visual asymmetry in perception of faces. Neuropsychologia, 11(3), 355–362. https://doi.org/10.1016/0028-3932(73)90049-3 CrossRefPubMedGoogle Scholar
- Goffaux, V., & Rossion, B. (2006). Faces are “spatial”--holistic face perception is supported by low spatial frequencies. Journal of Experimental Psychology: Human Perception and Performance, 32(4), 1023–1039. https://doi.org/10.1037/0096-1523.32.4.1023 CrossRefPubMedGoogle Scholar
- Goffaux, V., & Rossion, B. (2007). Face Inversion Disproportionately Impairs the Perception of Vertical but not Horizontal Relations Between Features. Journal of Experimental Psychology: Human Perception and Performance, 33(4), 995–1002. https://doi.org/10.1037/0096-1523.33.4.995 CrossRefPubMedGoogle Scholar
- Hasson, U., Levy, I., Behrmann, M., Hendler, T., & Malach, R. (2002). Eccentricity Bias as an Organizing Principle for Human High-Order Object Areas. Neuron, 34(3), 479–490. https://doi.org/10.1016/S0896-6273(02)00662-1 CrossRefPubMedGoogle Scholar
- Heller, W., & Levy, J. (1981). Perception and expression of emotion in right-handers and left-handers. Neuropsychologia, 19(2), 263–272. https://doi.org/10.1016/0028-3932(81)90110-X CrossRefPubMedGoogle Scholar
- Hellige, J. B., Corwin, W. H., & Jonsson, J. E. (1984). Effects of perceptual quality on the processing of human faces presented to the left and right cerebral hemispheres. Journal of Experimental Psychology: Human Perception and Performance, 10(1), 90–107. https://doi.org/10.1037/0096-1523.10.1.90 CrossRefPubMedGoogle Scholar
- Hellige, J. B., Jonsson, J. E., & Michimata, C. (1988). Processing from LVF, RVF and BILATERAL presentations: Examinations of metacontrol and interhemispheric interaction. Brain and Cognition, 7(1), 39–53. https://doi.org/10.1016/0278-2626(88)90020-6 CrossRefPubMedGoogle Scholar
- Hemond, C. C., Kanwisher, N. G., & Op de Beeck, H. P. (2007). A Preference for Contralateral Stimuli in Human Object- and Face-Selective Cortex. PLoS ONE, 2(6), e574. https://doi.org/10.1371/journal.pone.0000574 CrossRefPubMedPubMedCentralGoogle Scholar
- Hillger, L. A., & Koenig, O. (1991). Separable mechanisms in face processing: Evidence from hemispheric specialization. Journal of Cognitive Neuroscience, 3(1), 42–58. https://doi.org/10.1162/jocn.1991.3.1.42 CrossRefPubMedGoogle Scholar
- Hilliard, R. D. (1973). Hemispheric Laterality Effects on a Facial Recognition Task in Normal Subjects. Cortex, 9(3), 246–258. https://doi.org/10.1016/S0010-9452(73)80002-4 CrossRefPubMedGoogle Scholar
- Hole, G. J. (1994). Configurational factors in the perception of unfamiliar faces. Perception, 23(1), 65–74. https://doi.org/10.1068/p230065 CrossRefPubMedGoogle Scholar
- Hsiao, J. H. W., & Cottrell, G. (2008). Two Fixations Suffice in Face Recognition. Psychological Science, 19(10), 998–1006. https://doi.org/10.1111/j.1467-9280.2008.02191.x CrossRefPubMedGoogle Scholar
- Hsiao, J. H. W., & Liu, T. T. (2012). The optimal viewing position in face recognition. Journal of Vision, 12(2), 22–22. https://doi.org/10.1167/12.2.22 CrossRefPubMedGoogle Scholar
- Hsiao, J. H. W., & Shillcock, R. (2005). Foveal splitting causes differential processing of Chinese orthography in the male and female brain. Cognitive Brain Research, 25(2), 531–536. https://doi.org/10.1016/j.cogbrainres.2005.08.005 CrossRefPubMedGoogle Scholar
- Hunter, Z. R., Brysbaert, M., & Knecht, S. (2007). Foveal word reading requires interhemispheric communication. Journal of Cognitive Neuroscience, 19(8), 1373–1387. https://doi.org/10.1162/jocn.2007.19.8.1373 CrossRefPubMedGoogle Scholar
- Jacques, C., & Rossion, B. (2004). Concurrent processing reveals competition between visual representations of faces. NeuroReport, 15(15), 2417–2421. https://doi.org/10.1097/00001756-200410250-00023 CrossRefPubMedGoogle Scholar
- James, T. W., Arcurio, L. R., & Gold, J. M. (2013). Inversion effects in face-selective cortex with combinations of face parts. Journal of Cognitive Neuroscience, 25(3), 455–464. https://doi.org/10.1162/jocn_a_00312 CrossRefPubMedGoogle Scholar
- Kanwisher, N., McDermott, J., & Chun, M. M. (1997). The fusiform face area: a module in human extrastriate cortex specialized for face perception. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 17(11), 4302–4311. https://doi.org/10.1098/Rstb.2006.1934 CrossRefGoogle Scholar
- Kay, K. N., Weiner, K. S., & Grill-Spector, K. (2015). Attention Reduces Spatial Uncertainty in Human Ventral Temporal Cortex. Current Biology, 25(5), 595–600. https://doi.org/10.1016/J.CUB.2014.12.050 CrossRefPubMedGoogle Scholar
- Keenan, P. A., Whitman, R. D., & Pepe, J. (1989). Hemispheric asymmetry in the processing of high and low spatial frequencies: A facial recognition task. Brain and Cognition, 11(2), 229–237. https://doi.org/10.1016/0278-2626(89)90019-5 CrossRefPubMedGoogle Scholar
- Klein, D., Moscovitch, M., & Vigna, C. (1976). Attentional mechanisms and perceptual asymmetries in tachistoscopic recognition of words and faces. Neuropsychologia, 14(1), 55–66. https://doi.org/10.1016/0028-3932(76)90007-5 CrossRefPubMedGoogle Scholar
- Kolb, B., Milner, B., & Taylor, L. (1983). Perception of faces by patients with localized cortical excisions. Canadian Journal of Psychology, 37(1), 8–18. https://doi.org/10.1037/h0080697 CrossRefPubMedGoogle Scholar
- Kovács, P., Knakker, B., Hermann, P., Kovács, G., & Vidnyánszky, Z. (2017). Face inversion reveals holistic processing of peripheral faces. Cortex, 97, 81–95. https://doi.org/10.1016/j.cortex.2017.09.020 CrossRefPubMedGoogle Scholar
- Lavidor, M., & Ellis, A. W. (2003). Interhemispheric Integration of Letter Stimuli Presented Foveally or Extra-Foveally. Cortex, 39(1), 69–83. https://doi.org/10.1016/S0010-9452(08)70075-3 CrossRefPubMedGoogle Scholar
- Lavidor, M., & Walsh, V. (2004). The nature of foveal representation. Nature Reviews. Neuroscience, 5(9), 729–735. https://doi.org/10.1038/nrn1498 CrossRefPubMedGoogle Scholar
- Leder, H., & Bruce, V. (2000). When inverted faces are recognized: The role of configural information in face recognition. Quarterly Journal of Experimental Psychology Section A: Human Experimental Psychology, 53(2), 513–536. https://doi.org/10.1080/713755889 CrossRefGoogle Scholar
- Leder, H., & Carbon, C.-C. C. (2006). Face-specific configural processing of relational information. British Journal of Psychology, 97(1), 19–29. https://doi.org/10.1348/000712605X54794 CrossRefPubMedGoogle Scholar
- Leehey, S., Carey, S., Diamond, R., & Cahn, A. (1978). Upright and Inverted Faces: The Right Hemisphere Knows the Difference. Cortex, 14(3), 411–419. https://doi.org/10.1016/S0010-9452(78)80067-7 CrossRefPubMedGoogle Scholar
- Levine, S. C., & Koch-Weser, M. P. (1982). Right hemisphere superiority in the recognition of famous faces. Brain and Cognition, 1(1), 10–22. https://doi.org/10.1016/0278-2626(82)90003-3 CrossRefPubMedGoogle Scholar
- Levine, S. C., & Levy, J. (1986). Perceptual asymmetry for chimeric faces across the life span. Brain and Cognition, 5(3), 291–306. https://doi.org/10.1016/0278-2626(86)90033-3 CrossRefPubMedGoogle Scholar
- Levy, I., Hasson, U., Avidan, G., Hendler, T., & Malach, R. (2001). Center-periphery organization of human object areas. Nature Neuroscience, 4(5), 533–539. https://doi.org/10.1038/87490 CrossRefPubMedGoogle Scholar
- Levy, J., Heller, W., Banich, M. T., & Burton, L. A. (1983a). Are variations among right-handed individuals in perceptual asymmetries caused by characteristic arousal differences between hemispheres? Journal of Experimental Psychology: Human Perception and Performance, 9(3), 329–359. https://doi.org/10.1037/0096-1523.9.3.329 CrossRefPubMedGoogle Scholar
- Levy, J., Heller, W., Banich, M. T., & Burton, L. A. (1983b). Asymmetry of perception in free viewing of chimeric faces. Brain and Cognition, 2(4), 404–419. https://doi.org/10.1016/0278-2626(83)90021-0 CrossRefPubMedGoogle Scholar
- Levy, J., Trevarthen, C., & Sperry, R. W. (1972). Perception of bilateral chimeric figures following hemispheric deconnexion. Brain, 95(1), 61–78. https://doi.org/10.1093/brain/95.1.61 CrossRefPubMedGoogle Scholar
- Lindell, A. K., & Nicholls, M. E. R. (2003). Cortical representation of the fovea: Implications for visual half-field research. Cortex (Vol. 39, pp. 111–117). https://doi.org/10.1016/S0010-9452(08)70079-0 CrossRefPubMedGoogle Scholar
- Liu, T. T., Hayward, W. G., Oxner, M., & Behrmann, M. (2014). Holistic processing for left–right composite faces in Chinese and Caucasian observers. Visual Cognition, 22(8), 1050–1071. https://doi.org/10.1080/13506285.2014.944613 CrossRefGoogle Scholar
- Luh, K. E. (1998). Effect of inversion on perceptual biases for chimeric faces. Brain and Cognition, 37(1), 105–108. Retrieved from http://psycnet.apa.org/record/1998-04889-030 Google Scholar
- Luh, K. E., Rueckert, L. M., & Levy, J. (1991). Perceptual asymmetries for free viewing of several types of chimeric stimuli. Brain and Cognition, 16(1), 83–103. https://doi.org/10.1016/0278-2626(91)90087-O CrossRefPubMedGoogle Scholar
- Mäkelä, P., Näsänen, R., Rovamo, J., & Melmoth, D. (2001). Identification of facial images in peripheral vision. Vision Research, 41(5), 599–610. https://doi.org/10.1016/S0042-6989(00)00259-5 CrossRefPubMedGoogle Scholar
- Martinez, A., Moses, P., Frank, L., Buxton, R., Wong, E., & Stiles, J. (1997). Hemispheric asymmetries in global and local processing: evidence from fMRI. Neuroreport, 8(7), 1685–1689. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9189915 CrossRefGoogle Scholar
- Marzi, C. A., & Berlucchi, G. (1977). Right visual field superiority for accuracy of recognition of famous faces in normals. Neuropsychologia, 15(6), 751–756. https://doi.org/10.1016/0028-3932(77)90005-7 CrossRefPubMedGoogle Scholar
- Maurer, D., Le Grand, R., & Mondloch, C. J. (2002). The many faces of configural processing. Trends in Cognitive Sciences. https://doi.org/10.1016/S1364-6613(02)01903-4 CrossRefGoogle Scholar
- Mckone, E., & Yovel, G. (2009). Why does picture-plane inversion sometimes dissociate perception of features and spacing in faces, and sometimes not? toward a new theory of holistic processing. Psychonomic Bulletin and Review, 16(5), 778–797. https://doi.org/10.3758/PBR.16.5.778 CrossRefPubMedGoogle Scholar
- Milner, A. D., & Dunne, J. J. (1977). Lateralised perception of bilateral chimaeric faces by normal subjects. Nature, 268(5616), 175–176. https://doi.org/10.1038/268175a0 CrossRefPubMedGoogle Scholar
- Moreno, C. R., Borod, J. C., Welkowitz, J., & Alpert, M. (1990). Lateralization for the expression and perception of facial emotion as a function of age. Neuropsychologia, 28(2), 199–209. https://doi.org/10.1016/0028-3932(90)90101-S CrossRefPubMedGoogle Scholar
- Oldfield, R. C. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9(1), 97–113. https://doi.org/10.1016/0028-3932(71)90067-4 CrossRefPubMedGoogle Scholar
- Parkin, A. J., & Williamson, P. (1987). Cerebral Lateralisation at Different Stages of Facial Processing. Cortex, 23(1), 99–110. https://doi.org/10.1016/S0010-9452(87)80022-9 CrossRefPubMedGoogle Scholar
- Perrett, D. I., Rolls, E. T., & Caan, W. (1982). Visual neurones responsive to faces in the monkey temporal cortex. Experimental Brain Research, 47(3). https://doi.org/10.1007/BF00239352
- Piepers, D. W., & Robbins, R. A. (2012). A review and clarification of the terms “holistic,” “configural,” and “relational” in the face perception literature. Frontiers in Psychology. Frontiers Media SA. https://doi.org/10.3389/fpsyg.2012.00559
- Puce, A., Allison, T., Asgari, M., Gore, J. C., & McCarthy, G. (1996). Differential sensitivity of human visual cortex to faces, letterstrings, and textures: a functional magnetic resonance imaging study. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 16(16), 5205–5215. https://doi.org/10.1523/JNEUROSCI.16-16-05205.1996 CrossRefGoogle Scholar
- Ramon, M., & Rossion, B. (2012). Hemisphere-dependent holistic processing of familiar faces. Brain and Cognition, 78(1), 7–13. https://doi.org/10.1016/j.bandc.2011.10.009 CrossRefPubMedGoogle Scholar
- Rhodes, G. (1985). Perceptual asymmetries in face recognition. Brain and Cognition, 4(2), 197–218. https://doi.org/10.1016/0278-2626(85)90070-3 CrossRefPubMedGoogle Scholar
- Rhodes, G. (1993). Configural Coding, Expertise, and the Right Hemisphere Advantage for Face Recognition. Brain and Cognition, 22(1), 19–41. https://doi.org/10.1006/brcg.1993.1022 CrossRefPubMedGoogle Scholar
- Rhodes, G., Brake, S., & Atkinson, A. P. (1993). What’s lost in inverted faces? Cognition, 47(1), 25–57. https://doi.org/10.1016/0010-0277(93)90061-Y CrossRefPubMedGoogle Scholar
- Richler, J. J., Palmeri, T. J., & Gauthier, I. (2012). Meanings, Mechanisms, and Measures of Holistic Processing. Frontiers in Psychology, 3, 553. https://doi.org/10.3389/fpsyg.2012.00553 CrossRefPubMedPubMedCentralGoogle Scholar
- Rizzolatti, G., & Buchtel, H. A. (1977). Hemispheric Superiority in Reaction Time to Faces: A Sex Difference. Cortex, 13(3), 300–305. https://doi.org/10.1016/S0010-9452(77)80039-7 CrossRefPubMedGoogle Scholar
- Rizzolatti, G., Umiltà, C., & Berlucchi, G. (1971). Opposite superiorities of the right and left cerebral hemispheres in discriminative reaction time to physiognomical and alphabetical material. Brain, 94(3), 431–442. https://doi.org/10.1093/brain/94.3.431 CrossRefPubMedGoogle Scholar
- Rossion, B., Dricot, L., Devolder, A., Bodart, J.-M. M., Crommelinck, M., De Gelder, B., … Zoontjes, R. (2000). Hemispheric Asymmetries for Whole-Based and Part-Based Face Processing in the Human Fusiform Gyrus. Journal of Cognitive Neuroscience, 12(5), 793–802. https://doi.org/10.1162/089892900562606 CrossRefPubMedGoogle Scholar
- Sadr, J., & Krowicki, L. (2019). Face Perception Loves a Challenge: Less Information Sparks More Attraction. Vision Research. https://doi.org/10.1016/j.visres.2019.01.009 CrossRefGoogle Scholar
- Sayres, R., & Grill-Spector, K. (2008). Relating retinotopic and object-selective responses in human lateral occipital cortex. Journal of Neurophysiology, 100(1), 249–267. https://doi.org/10.1152/jn.01383.2007 CrossRefPubMedPubMedCentralGoogle Scholar
- Schiltz, C., & Rossion, B. (2006). Faces are represented holistically in the human occipito-temporal cortex. NeuroImage, 32(3), 1385–1394. https://doi.org/10.1016/j.neuroimage.2006.05.037 CrossRefPubMedGoogle Scholar
- Schwartz, M., & Smith, M. L. (1980). Visual asymmetries with chimeric faces. Neuropsychologia, 18(1), 103–106. https://doi.org/10.1016/0028-3932(80)90091-3 CrossRefPubMedGoogle Scholar
- Searcy, J. H., & Bartlett, J. C. (1996). Inversion and processing of component and spatial–relational information in faces. Journal of Experimental Psychology: Human Perception and Performance, 22(4), 904–915. https://doi.org/10.1037/0096-1523.22.4.904 CrossRefPubMedGoogle Scholar
- Sergent, J. (1982a). About face: Left-hemisphere involvement in processing physiognomies. Journal of Experimental Psychology: Human Perception and Performance, 8(1), 1–14. https://doi.org/10.1037/0096-1523.8.1.1 CrossRefPubMedGoogle Scholar
- Sergent, J. (1982b). The cerebral balance of power: Confrontation or cooperation? Journal of Experimental Psychology: Human Perception and Performance, 8(2), 253–272. https://doi.org/10.1037/0096-1523.8.2.253 CrossRefPubMedGoogle Scholar
- Sergent, J. (1984a). An investigation into component and configural processes underlying face perception. British Journal of Psychology, 75(2), 221–242. https://doi.org/10.1111/j.2044-8295.1984.tb01895.x CrossRefPubMedGoogle Scholar
- Sergent, J. (1984b). Configural processing of faces in the left and the right cerebral hemispheres. Journal of Experimental Psychology: Human Perception and Performance, 10(4), 554–572. https://doi.org/10.1037/0096-1523.10.4.554 CrossRefPubMedGoogle Scholar
- Sergent, J. (1985). Influence of Task and Input Factors on Hemispheric Involvement in Face Processing. Journal of Experimental Psychology: Human Perception and Performance, 11(6), 846–861. https://doi.org/10.1037/0096-1523.11.6.846 CrossRefPubMedGoogle Scholar
- Sergent, J., & Bindra, D. (1981). Differential hemispheric processing of faces: Methodological considerations and reinterpretation. Psychological Bulletin, 89(3), 541–554. https://doi.org/10.1037/0033-2909.89.3.541 CrossRefPubMedGoogle Scholar
- Sergent, J., Ohta, S., & Macdonald, B. (1992). Functional neuroanatomy of face and object processing: A positron emission tomography study. Brain, 115(1), 15–36. https://doi.org/10.1093/brain/115.1.15 CrossRefPubMedGoogle Scholar
- Siman-Tov, T., Mendelsohn, A., Schonberg, T., Avidan, G., Podlipsky, I., Pessoa, L., … Hendler, T. (2007). Bihemispheric Leftward Bias in a Visuospatial Attention-Related Network. Journal of Neuroscience, 27(42), 11271–11278. https://doi.org/10.1523/JNEUROSCI.0599-07.2007 CrossRefPubMedGoogle Scholar
- Tanaka, J. W., & Farah, M. J. (1993). Parts and Wholes in Face Recognition. The Quarterly Journal of Experimental Psychology Section A, 46(2), 225–245. https://doi.org/10.1080/14640749308401045 CrossRefGoogle Scholar
- Tanaka, J. W., & Simonyi, D. (2016). The “parts and wholes” of face recognition: A review of the literature. Quarterly Journal of Experimental Psychology, 69(10), 1876–1889. https://doi.org/10.1080/17470218.2016.1146780 CrossRefGoogle Scholar
- Van Belle, G., De Graef, P., Verfaillie, K., Rossion, B., & Lefevre, P. (2010). Face inversion impairs holistic perception: Evidence from gaze-contingent stimulation. Journal of Vision, 10(5), 10–10. https://doi.org/10.1167/10.5.10 CrossRefPubMedGoogle Scholar
- Van der Haegen, L., & Brysbaert, M. (2018). The relationship between behavioral language laterality, face laterality and language performance in left-handers. PLoS ONE, 13(12), e0208696. https://doi.org/10.1371/journal.pone.0208696 CrossRefPubMedPubMedCentralGoogle Scholar
- Van Kleeck, M. H. (1989). Hemispheric differences in global versus local processing of hierarchical visual stimuli by normal subjects: New data and a meta-analysis of previous studies. Neuropsychologia, 27(9), 1165–1178. https://doi.org/10.1016/0028-3932(89)90099-7 CrossRefPubMedGoogle Scholar
- Wolff, W. (1933). The experimental study of forms of expression. Journal of Personality, 2(2), 168–176. https://doi.org/10.1111/j.1467-6494.1933.tb02092.x CrossRefGoogle Scholar
- Yovel, G., Levy, J., Grabowecky, M., & Paller, K. A. (2003). Neural correlates of the left-visual-field superiority in face perception appear at multiple stages of face processing. Journal of Cognitive Neuroscience, 15(3), 462–474. https://doi.org/10.1162/089892903321593162 CrossRefPubMedGoogle Scholar
- Yovel, G., Paller, K. A., & Levy, J. (2005). A whole face is more than the sum of its halves: Interactive processing in face perception. Visual Cognition, 12(2), 337–352. https://doi.org/10.1080/13506280444000210 CrossRefGoogle Scholar
- Yovel, G., Tambini, A., & Brandman, T. (2008). The asymmetry of the fusiform face area is a stable individual characteristic that underlies the left-visual-field superiority for faces. Neuropsychologia, 46(13), 3061–3068. https://doi.org/10.1016/j.neuropsychologia.2008.06.017 CrossRefPubMedGoogle Scholar