Does right hemisphere superiority sufficiently explain the left visual field advantage in face recognition?

  • Matthew T. HarrisonEmail author
  • Lars Strother


The tendency to perceive the identity of the left half of a centrally viewed face more strongly than that of the right half is associated with visual processing of faces in the right hemisphere (RH). Here we investigate conditions under which this well-known left visual field (LVF) half-face advantage fails to occur. Our findings challenge the sufficiency of its explanation as a function of RH specialization for face processing coupled with LVF-RH correspondence. In two experiments we show that the LVF half-face advantage occurs for normal faces and chimeric faces composed of different half-face identities. In a third experiment, we show that face inversion disrupts the LVF half-face advantage. In two additional experiments we show that half-faces viewed in isolation or paired with inverted half-faces fail to show the LVF advantage. Consistent with previous explanations of the LVF half-face advantage, our findings suggest that the LVF half-face advantage reflects RH superiority for processing faces and direct transfer of LVF face information to visual cortex in the RH. Critically, however, our findings also suggest the operation of a third factor, which involves the prioritization of face-processing resources to the LVF, but only when two upright face-halves compete for these resources. We therefore conclude that RH superiority alone does not suffice to explain the LVF advantage in face recognition. We also discuss the implications of our findings for specialized visual processing of faces by the right hemisphere, and we distinguish LVF advantages for faces viewed centrally and peripherally in divided field studies.


Face recognition Hemispheric specialization Visual field bias Holistic processing Visual perception 



  1. Bartlett, J. C., Searcy, J. H., & Abdi, H. (2003). What are the routes to face recognition? In M. A. Peterson & G. Rhodes (Eds.), Advances in visual cognition. Perception of faces, objects, and scenes: Analytic and holistic processes (pp. 21–47). New York: Oxford University Press.Google Scholar
  2. Barton, J. J. S., Keenan, J. P., & Bass, T. (2001). Discrimination of spatial relations and features in faces: Effects of inversion and viewing duration. British Journal of Psychology, 92(3), 527–549. CrossRefPubMedGoogle Scholar
  3. Beaumont, J. G. (1983). Methods for Studying Cerebral Hemispheric Function. In Functions of the Right Cerebral Hemisphere (pp. 113–146). Elsevier. CrossRefGoogle Scholar
  4. Boremanse, A., Norcia, A. M., & Rossion, B. (2013). An objective signature for visual binding of face parts in the human brain. Journal of Vision, 13(11), 6–6. CrossRefPubMedGoogle Scholar
  5. Boremanse, A., Norcia, A. M., & Rossion, B. (2014). Dissociation of part-based and integrated neural responses to faces by means of electroencephalographic frequency tagging. European Journal of Neuroscience, 40(6), 2987–2997. CrossRefPubMedGoogle Scholar
  6. Bourne, V. J. (2006). The divided visual field paradigm: Methodological considerations. Laterality, 11(4), 373–393. CrossRefPubMedGoogle Scholar
  7. Bourne, V. J. (2008). Chimeric faces, visual field bias, and reaction time bias: Have we been missing a trick? Laterality: Asymmetries of Body, Brain and Cognition, 13(1), 92–103. CrossRefGoogle Scholar
  8. Bourne, V. J. (2011). Examining the effects of inversion on lateralisation for processing facial emotion. Cortex, 47(6), 690–695. CrossRefPubMedGoogle Scholar
  9. Brady, N., Campbell, M., & Flaherty, M. (2005). Perceptual asymmetries are preserved in memory for highly familiar faces of self and friend. Brain and Cognition, 58(3), 334–342. CrossRefPubMedGoogle Scholar
  10. Brainard, D. H. (1997). The Psychophysics Toolbox. Spatial Vision, 10(4), 433–436. CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bukowski, H., Dricot, L., Hanseeuw, B., & Rossion, B. (2013). Cerebral lateralization of face-sensitive areas in left-handers: Only the FFA does not get it right. Cortex, 49(9), 2583–2589. CrossRefPubMedGoogle Scholar
  12. Burt, D. M., & Perrett, D. I. (1997). Perceptual asymmetries in judgements of facial attractiveness, age, gender, speech and expression. Neuropsychologia, 35(5), 685–693. CrossRefPubMedGoogle Scholar
  13. Butler, S. H., & Harvey, M. (2005). Does inversion abolish the left chimeric face processing advantage? Neuroreport, 16(18), 1991–1993. CrossRefPubMedGoogle Scholar
  14. Cattaneo, Z., Renzi, C., Bona, S., Merabet, L. B., Carbon, C.-C. C., & Vecchi, T. (2014). Hemispheric asymmetry in discriminating faces differing for featural or configural (second-order relations) aspects. Psychonomic Bulletin and Review, 21(2), 363–369. CrossRefPubMedGoogle Scholar
  15. Cheung, O. S., Richler, J. J., Palmeri, T. J., & Gauthier, I. (2008). Revisiting the Role of Spatial Frequencies in the Holistic Processing of Faces. Journal of Experimental Psychology: Human Perception and Performance, 34(6), 1327–1336. CrossRefPubMedGoogle Scholar
  16. Chua, K. W., & Gauthier, I. (2016). Category-specific learned attentional bias to object parts. Attention, Perception, & Psychophysics, 78(1), 44–51. CrossRefGoogle Scholar
  17. Chua, K. W., Richler, J. J., & Gauthier, I. (2014). Becoming a lunari or taiyo expert: Learned attention to parts drives holistic processing of faces. Journal of Experimental Psychology: Human Perception and Performance, 40(3), 1174–1182. CrossRefPubMedGoogle Scholar
  18. Chua, K. W., Richler, J. J., & Gauthier, I. (2015). Holistic processing from learned attention to parts. Journal of Experimental Psychology: General, 144(4), 723–729. CrossRefGoogle Scholar
  19. Cohen, J. (1988). Statistical power for the social sciences. Hillsdale, NJ: Laurence Erlbaum and Associates.Google Scholar
  20. Collishaw, S. M., & Hole, G. J. (2000). Featural and Configurational Processes in the Recognition of Faces of Different Familiarity. Perception, 29(8), 893–909. CrossRefPubMedGoogle Scholar
  21. Coolican, J., Eskes, G. A., McMullen, P. A., & Lecky, E. (2008). Perceptual biases in processing facial identity and emotion. Brain and Cognition, 66(2), 176–187. CrossRefPubMedGoogle Scholar
  22. Diamond, R., & Carey, S. (1986). Why faces are and are not special: An effect of expertise. Journal of Experimental Psychology: General, 115(2), 107–117. CrossRefGoogle Scholar
  23. Dundas, E. M., Plaut, D. C., & Behrmann, M. (2013). The joint development of hemispheric lateralization for words and faces. Journal of Experimental Psychology. General, 142(2), 348–358. CrossRefPubMedGoogle Scholar
  24. Dundas, E. M., Plaut, D. C., & Behrmann, M. (2015). Variable left-hemisphere language and orthographic lateralization reduces right-hemisphere face lateralization. Journal of Cognitive Neuroscience, 27(5), 913–925. CrossRefPubMedGoogle Scholar
  25. Farah, M. J., Tanaka, J. W., & Drain, H. M. (1995). What causes the face inversion effect? Journal of Experimental Psychology: Human Perception and Performance, 21(3), 628–634. CrossRefPubMedGoogle Scholar
  26. Faul, F., Erdfelder, E., Buchner, A., & Lang, A. G. (2009). Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41(4), 1149–1160. CrossRefPubMedGoogle Scholar
  27. Freire, A., Lee, K., & Symons, L. A. (2000). The face-inversion effect as a deficit in the encoding of configurai information: Direct evidence. Perception, 29(2), 159–170. CrossRefPubMedGoogle Scholar
  28. Gauthier, I., Tarr, M. J., Anderson, A. W., Skudlarski, P., & Gore, J. C. (1999). Activation of the middle fusiform “face area” increases with expertise in recognizing novel objects. Nature Neuroscience, 2(6), 568–573. CrossRefPubMedGoogle Scholar
  29. Gentile, F., & Jansma, B. M. (2010). Neural competition through visual similarity in face selection. Brain Research, 1351, 172–184. CrossRefPubMedGoogle Scholar
  30. Gentile, F., & Jansma, B. M. (2012). Temporal dynamics of face selection mechanism in the context of similar and dissimilar faces: ERP evidence for biased competition within the ventral occipito-temporal cortex using ICA. NeuroImage, 59(1), 682–694. CrossRefPubMedGoogle Scholar
  31. Gilbert, C., & Bakan, P. (1973). Visual asymmetry in perception of faces. Neuropsychologia, 11(3), 355–362. CrossRefPubMedGoogle Scholar
  32. Goffaux, V., & Rossion, B. (2006). Faces are “spatial”--holistic face perception is supported by low spatial frequencies. Journal of Experimental Psychology: Human Perception and Performance, 32(4), 1023–1039. CrossRefPubMedGoogle Scholar
  33. Goffaux, V., & Rossion, B. (2007). Face Inversion Disproportionately Impairs the Perception of Vertical but not Horizontal Relations Between Features. Journal of Experimental Psychology: Human Perception and Performance, 33(4), 995–1002. CrossRefPubMedGoogle Scholar
  34. Hasson, U., Levy, I., Behrmann, M., Hendler, T., & Malach, R. (2002). Eccentricity Bias as an Organizing Principle for Human High-Order Object Areas. Neuron, 34(3), 479–490. CrossRefPubMedGoogle Scholar
  35. Heller, W., & Levy, J. (1981). Perception and expression of emotion in right-handers and left-handers. Neuropsychologia, 19(2), 263–272. CrossRefPubMedGoogle Scholar
  36. Hellige, J. B., Corwin, W. H., & Jonsson, J. E. (1984). Effects of perceptual quality on the processing of human faces presented to the left and right cerebral hemispheres. Journal of Experimental Psychology: Human Perception and Performance, 10(1), 90–107. CrossRefPubMedGoogle Scholar
  37. Hellige, J. B., Jonsson, J. E., & Michimata, C. (1988). Processing from LVF, RVF and BILATERAL presentations: Examinations of metacontrol and interhemispheric interaction. Brain and Cognition, 7(1), 39–53. CrossRefPubMedGoogle Scholar
  38. Hemond, C. C., Kanwisher, N. G., & Op de Beeck, H. P. (2007). A Preference for Contralateral Stimuli in Human Object- and Face-Selective Cortex. PLoS ONE, 2(6), e574. CrossRefPubMedPubMedCentralGoogle Scholar
  39. Hillger, L. A., & Koenig, O. (1991). Separable mechanisms in face processing: Evidence from hemispheric specialization. Journal of Cognitive Neuroscience, 3(1), 42–58. CrossRefPubMedGoogle Scholar
  40. Hilliard, R. D. (1973). Hemispheric Laterality Effects on a Facial Recognition Task in Normal Subjects. Cortex, 9(3), 246–258. CrossRefPubMedGoogle Scholar
  41. Hole, G. J. (1994). Configurational factors in the perception of unfamiliar faces. Perception, 23(1), 65–74. CrossRefPubMedGoogle Scholar
  42. Hsiao, J. H. W., & Cottrell, G. (2008). Two Fixations Suffice in Face Recognition. Psychological Science, 19(10), 998–1006. CrossRefPubMedGoogle Scholar
  43. Hsiao, J. H. W., & Liu, T. T. (2012). The optimal viewing position in face recognition. Journal of Vision, 12(2), 22–22. CrossRefPubMedGoogle Scholar
  44. Hsiao, J. H. W., & Shillcock, R. (2005). Foveal splitting causes differential processing of Chinese orthography in the male and female brain. Cognitive Brain Research, 25(2), 531–536. CrossRefPubMedGoogle Scholar
  45. Hunter, Z. R., Brysbaert, M., & Knecht, S. (2007). Foveal word reading requires interhemispheric communication. Journal of Cognitive Neuroscience, 19(8), 1373–1387. CrossRefPubMedGoogle Scholar
  46. Jacques, C., & Rossion, B. (2004). Concurrent processing reveals competition between visual representations of faces. NeuroReport, 15(15), 2417–2421. CrossRefPubMedGoogle Scholar
  47. James, T. W., Arcurio, L. R., & Gold, J. M. (2013). Inversion effects in face-selective cortex with combinations of face parts. Journal of Cognitive Neuroscience, 25(3), 455–464. CrossRefPubMedGoogle Scholar
  48. Kanwisher, N., McDermott, J., & Chun, M. M. (1997). The fusiform face area: a module in human extrastriate cortex specialized for face perception. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 17(11), 4302–4311. CrossRefGoogle Scholar
  49. Kay, K. N., Weiner, K. S., & Grill-Spector, K. (2015). Attention Reduces Spatial Uncertainty in Human Ventral Temporal Cortex. Current Biology, 25(5), 595–600. CrossRefPubMedGoogle Scholar
  50. Keenan, P. A., Whitman, R. D., & Pepe, J. (1989). Hemispheric asymmetry in the processing of high and low spatial frequencies: A facial recognition task. Brain and Cognition, 11(2), 229–237. CrossRefPubMedGoogle Scholar
  51. Klein, D., Moscovitch, M., & Vigna, C. (1976). Attentional mechanisms and perceptual asymmetries in tachistoscopic recognition of words and faces. Neuropsychologia, 14(1), 55–66. CrossRefPubMedGoogle Scholar
  52. Kolb, B., Milner, B., & Taylor, L. (1983). Perception of faces by patients with localized cortical excisions. Canadian Journal of Psychology, 37(1), 8–18. CrossRefPubMedGoogle Scholar
  53. Kovács, P., Knakker, B., Hermann, P., Kovács, G., & Vidnyánszky, Z. (2017). Face inversion reveals holistic processing of peripheral faces. Cortex, 97, 81–95. CrossRefPubMedGoogle Scholar
  54. Lavidor, M., & Ellis, A. W. (2003). Interhemispheric Integration of Letter Stimuli Presented Foveally or Extra-Foveally. Cortex, 39(1), 69–83. CrossRefPubMedGoogle Scholar
  55. Lavidor, M., & Walsh, V. (2004). The nature of foveal representation. Nature Reviews. Neuroscience, 5(9), 729–735. CrossRefPubMedGoogle Scholar
  56. Leder, H., & Bruce, V. (2000). When inverted faces are recognized: The role of configural information in face recognition. Quarterly Journal of Experimental Psychology Section A: Human Experimental Psychology, 53(2), 513–536. CrossRefGoogle Scholar
  57. Leder, H., & Carbon, C.-C. C. (2006). Face-specific configural processing of relational information. British Journal of Psychology, 97(1), 19–29. CrossRefPubMedGoogle Scholar
  58. Leehey, S., Carey, S., Diamond, R., & Cahn, A. (1978). Upright and Inverted Faces: The Right Hemisphere Knows the Difference. Cortex, 14(3), 411–419. CrossRefPubMedGoogle Scholar
  59. Levine, S. C., & Koch-Weser, M. P. (1982). Right hemisphere superiority in the recognition of famous faces. Brain and Cognition, 1(1), 10–22. CrossRefPubMedGoogle Scholar
  60. Levine, S. C., & Levy, J. (1986). Perceptual asymmetry for chimeric faces across the life span. Brain and Cognition, 5(3), 291–306. CrossRefPubMedGoogle Scholar
  61. Levy, I., Hasson, U., Avidan, G., Hendler, T., & Malach, R. (2001). Center-periphery organization of human object areas. Nature Neuroscience, 4(5), 533–539. CrossRefPubMedGoogle Scholar
  62. Levy, J., Heller, W., Banich, M. T., & Burton, L. A. (1983a). Are variations among right-handed individuals in perceptual asymmetries caused by characteristic arousal differences between hemispheres? Journal of Experimental Psychology: Human Perception and Performance, 9(3), 329–359. CrossRefPubMedGoogle Scholar
  63. Levy, J., Heller, W., Banich, M. T., & Burton, L. A. (1983b). Asymmetry of perception in free viewing of chimeric faces. Brain and Cognition, 2(4), 404–419. CrossRefPubMedGoogle Scholar
  64. Levy, J., Trevarthen, C., & Sperry, R. W. (1972). Perception of bilateral chimeric figures following hemispheric deconnexion. Brain, 95(1), 61–78. CrossRefPubMedGoogle Scholar
  65. Lindell, A. K., & Nicholls, M. E. R. (2003). Cortical representation of the fovea: Implications for visual half-field research. Cortex (Vol. 39, pp. 111–117). CrossRefPubMedGoogle Scholar
  66. Liu, T. T., Hayward, W. G., Oxner, M., & Behrmann, M. (2014). Holistic processing for left–right composite faces in Chinese and Caucasian observers. Visual Cognition, 22(8), 1050–1071. CrossRefGoogle Scholar
  67. Luh, K. E. (1998). Effect of inversion on perceptual biases for chimeric faces. Brain and Cognition, 37(1), 105–108. Retrieved from Google Scholar
  68. Luh, K. E., Rueckert, L. M., & Levy, J. (1991). Perceptual asymmetries for free viewing of several types of chimeric stimuli. Brain and Cognition, 16(1), 83–103. CrossRefPubMedGoogle Scholar
  69. Mäkelä, P., Näsänen, R., Rovamo, J., & Melmoth, D. (2001). Identification of facial images in peripheral vision. Vision Research, 41(5), 599–610. CrossRefPubMedGoogle Scholar
  70. Martinez, A., Moses, P., Frank, L., Buxton, R., Wong, E., & Stiles, J. (1997). Hemispheric asymmetries in global and local processing: evidence from fMRI. Neuroreport, 8(7), 1685–1689. Retrieved from CrossRefGoogle Scholar
  71. Marzi, C. A., & Berlucchi, G. (1977). Right visual field superiority for accuracy of recognition of famous faces in normals. Neuropsychologia, 15(6), 751–756. CrossRefPubMedGoogle Scholar
  72. Maurer, D., Le Grand, R., & Mondloch, C. J. (2002). The many faces of configural processing. Trends in Cognitive Sciences. CrossRefGoogle Scholar
  73. Mckone, E., & Yovel, G. (2009). Why does picture-plane inversion sometimes dissociate perception of features and spacing in faces, and sometimes not? toward a new theory of holistic processing. Psychonomic Bulletin and Review, 16(5), 778–797. CrossRefPubMedGoogle Scholar
  74. Milner, A. D., & Dunne, J. J. (1977). Lateralised perception of bilateral chimaeric faces by normal subjects. Nature, 268(5616), 175–176. CrossRefPubMedGoogle Scholar
  75. Moreno, C. R., Borod, J. C., Welkowitz, J., & Alpert, M. (1990). Lateralization for the expression and perception of facial emotion as a function of age. Neuropsychologia, 28(2), 199–209. CrossRefPubMedGoogle Scholar
  76. Oldfield, R. C. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9(1), 97–113. CrossRefPubMedGoogle Scholar
  77. Parkin, A. J., & Williamson, P. (1987). Cerebral Lateralisation at Different Stages of Facial Processing. Cortex, 23(1), 99–110. CrossRefPubMedGoogle Scholar
  78. Perrett, D. I., Rolls, E. T., & Caan, W. (1982). Visual neurones responsive to faces in the monkey temporal cortex. Experimental Brain Research, 47(3).
  79. Piepers, D. W., & Robbins, R. A. (2012). A review and clarification of the terms “holistic,” “configural,” and “relational” in the face perception literature. Frontiers in Psychology. Frontiers Media SA.
  80. Puce, A., Allison, T., Asgari, M., Gore, J. C., & McCarthy, G. (1996). Differential sensitivity of human visual cortex to faces, letterstrings, and textures: a functional magnetic resonance imaging study. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 16(16), 5205–5215. CrossRefGoogle Scholar
  81. Ramon, M., & Rossion, B. (2012). Hemisphere-dependent holistic processing of familiar faces. Brain and Cognition, 78(1), 7–13. CrossRefPubMedGoogle Scholar
  82. Rhodes, G. (1985). Perceptual asymmetries in face recognition. Brain and Cognition, 4(2), 197–218. CrossRefPubMedGoogle Scholar
  83. Rhodes, G. (1993). Configural Coding, Expertise, and the Right Hemisphere Advantage for Face Recognition. Brain and Cognition, 22(1), 19–41. CrossRefPubMedGoogle Scholar
  84. Rhodes, G., Brake, S., & Atkinson, A. P. (1993). What’s lost in inverted faces? Cognition, 47(1), 25–57. CrossRefPubMedGoogle Scholar
  85. Richler, J. J., Palmeri, T. J., & Gauthier, I. (2012). Meanings, Mechanisms, and Measures of Holistic Processing. Frontiers in Psychology, 3, 553. CrossRefPubMedPubMedCentralGoogle Scholar
  86. Rizzolatti, G., & Buchtel, H. A. (1977). Hemispheric Superiority in Reaction Time to Faces: A Sex Difference. Cortex, 13(3), 300–305. CrossRefPubMedGoogle Scholar
  87. Rizzolatti, G., Umiltà, C., & Berlucchi, G. (1971). Opposite superiorities of the right and left cerebral hemispheres in discriminative reaction time to physiognomical and alphabetical material. Brain, 94(3), 431–442. CrossRefPubMedGoogle Scholar
  88. Rossion, B., Dricot, L., Devolder, A., Bodart, J.-M. M., Crommelinck, M., De Gelder, B., … Zoontjes, R. (2000). Hemispheric Asymmetries for Whole-Based and Part-Based Face Processing in the Human Fusiform Gyrus. Journal of Cognitive Neuroscience, 12(5), 793–802. CrossRefPubMedGoogle Scholar
  89. Sadr, J., & Krowicki, L. (2019). Face Perception Loves a Challenge: Less Information Sparks More Attraction. Vision Research. CrossRefGoogle Scholar
  90. Sayres, R., & Grill-Spector, K. (2008). Relating retinotopic and object-selective responses in human lateral occipital cortex. Journal of Neurophysiology, 100(1), 249–267. CrossRefPubMedPubMedCentralGoogle Scholar
  91. Schiltz, C., & Rossion, B. (2006). Faces are represented holistically in the human occipito-temporal cortex. NeuroImage, 32(3), 1385–1394. CrossRefPubMedGoogle Scholar
  92. Schwartz, M., & Smith, M. L. (1980). Visual asymmetries with chimeric faces. Neuropsychologia, 18(1), 103–106. CrossRefPubMedGoogle Scholar
  93. Searcy, J. H., & Bartlett, J. C. (1996). Inversion and processing of component and spatial–relational information in faces. Journal of Experimental Psychology: Human Perception and Performance, 22(4), 904–915. CrossRefPubMedGoogle Scholar
  94. Sergent, J. (1982a). About face: Left-hemisphere involvement in processing physiognomies. Journal of Experimental Psychology: Human Perception and Performance, 8(1), 1–14. CrossRefPubMedGoogle Scholar
  95. Sergent, J. (1982b). The cerebral balance of power: Confrontation or cooperation? Journal of Experimental Psychology: Human Perception and Performance, 8(2), 253–272. CrossRefPubMedGoogle Scholar
  96. Sergent, J. (1984a). An investigation into component and configural processes underlying face perception. British Journal of Psychology, 75(2), 221–242. CrossRefPubMedGoogle Scholar
  97. Sergent, J. (1984b). Configural processing of faces in the left and the right cerebral hemispheres. Journal of Experimental Psychology: Human Perception and Performance, 10(4), 554–572. CrossRefPubMedGoogle Scholar
  98. Sergent, J. (1985). Influence of Task and Input Factors on Hemispheric Involvement in Face Processing. Journal of Experimental Psychology: Human Perception and Performance, 11(6), 846–861. CrossRefPubMedGoogle Scholar
  99. Sergent, J., & Bindra, D. (1981). Differential hemispheric processing of faces: Methodological considerations and reinterpretation. Psychological Bulletin, 89(3), 541–554. CrossRefPubMedGoogle Scholar
  100. Sergent, J., Ohta, S., & Macdonald, B. (1992). Functional neuroanatomy of face and object processing: A positron emission tomography study. Brain, 115(1), 15–36. CrossRefPubMedGoogle Scholar
  101. Siman-Tov, T., Mendelsohn, A., Schonberg, T., Avidan, G., Podlipsky, I., Pessoa, L., … Hendler, T. (2007). Bihemispheric Leftward Bias in a Visuospatial Attention-Related Network. Journal of Neuroscience, 27(42), 11271–11278. CrossRefPubMedGoogle Scholar
  102. Tanaka, J. W., & Farah, M. J. (1993). Parts and Wholes in Face Recognition. The Quarterly Journal of Experimental Psychology Section A, 46(2), 225–245. CrossRefGoogle Scholar
  103. Tanaka, J. W., & Simonyi, D. (2016). The “parts and wholes” of face recognition: A review of the literature. Quarterly Journal of Experimental Psychology, 69(10), 1876–1889. CrossRefGoogle Scholar
  104. Van Belle, G., De Graef, P., Verfaillie, K., Rossion, B., & Lefevre, P. (2010). Face inversion impairs holistic perception: Evidence from gaze-contingent stimulation. Journal of Vision, 10(5), 10–10. CrossRefPubMedGoogle Scholar
  105. Van der Haegen, L., & Brysbaert, M. (2018). The relationship between behavioral language laterality, face laterality and language performance in left-handers. PLoS ONE, 13(12), e0208696. CrossRefPubMedPubMedCentralGoogle Scholar
  106. Van Kleeck, M. H. (1989). Hemispheric differences in global versus local processing of hierarchical visual stimuli by normal subjects: New data and a meta-analysis of previous studies. Neuropsychologia, 27(9), 1165–1178. CrossRefPubMedGoogle Scholar
  107. Wolff, W. (1933). The experimental study of forms of expression. Journal of Personality, 2(2), 168–176. CrossRefGoogle Scholar
  108. Yovel, G., Levy, J., Grabowecky, M., & Paller, K. A. (2003). Neural correlates of the left-visual-field superiority in face perception appear at multiple stages of face processing. Journal of Cognitive Neuroscience, 15(3), 462–474. CrossRefPubMedGoogle Scholar
  109. Yovel, G., Paller, K. A., & Levy, J. (2005). A whole face is more than the sum of its halves: Interactive processing in face perception. Visual Cognition, 12(2), 337–352. CrossRefGoogle Scholar
  110. Yovel, G., Tambini, A., & Brandman, T. (2008). The asymmetry of the fusiform face area is a stable individual characteristic that underlies the left-visual-field superiority for faces. Neuropsychologia, 46(13), 3061–3068. CrossRefPubMedGoogle Scholar

Copyright information

© The Psychonomic Society, Inc. 2019

Authors and Affiliations

  1. 1.Department of PsychologyUniversity of Nevada RenoRenoUSA

Personalised recommendations