Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Feature integration theory in non-humans: Spotlight on the archerfish

  • 88 Accesses

Abstract

The ability to visually search, quickly and accurately, for designated items in cluttered environments is crucial for many species to ensure survival. Feature integration theory, one of the most influential theories of attention, suggests that certain visual features that facilitate this search are extracted pre-attentively in a parallel fashion across the visual field during early visual processing. Hence, if some objects of interest possess such a feature uniquely, it will pop out from the background during the integration stage and draw visual attention immediately and effortlessly. For years, visual search research has explored these ideas by investigating the conditions (and visual features) that characterize efficient versus inefficient visual searches. The bulk of research has focused on human vision, though ecologically there are many reasons to believe that feature integration theory is applicable to other species as well. Here we review the main findings regarding the relevance of feature integration theory to non-human species and expand it to new research on one particular animal model – the archerfish. Specifically, we study both archerfish and humans in an extensive and comparative set of visual-search experiments. The findings indicate that both species exhibit similar behavior in basic feature searches and in conjunction search tasks. In contrast, performance differed in searches defined by shape. These results suggest that evolution pressured many visual features to pop out for both species despite cardinal differences in brain anatomy and living environment, and strengthens the argument that aspects of feature integration theory may be generalizable across the animal kingdom.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Abeele, V. A. V., Tierens, P., De Schutter, B., De-Wit, L., & Geurts, L. (2015). Game-based experiments on human visual attention. Paper presented at: Foundations of Digital Games, (Pacific Grove, CA) January.

  2. Allan, S. A., Day, J. F., & Edman, J. D. (1987). Visual ecology of biting flies. Annual Review of Entomology, 32(1), 297-314.

  3. Allan, S. E., & Blough, D. S. (1989). Feature-based search asymmetries in pigeons and humans. Perception & Psychophysics, 46(5), 456-464.

  4. Allen, G. R. (1978). A review of the archer fishes (family toxotidae). Rec. West. Aust. Mus, 6(4), 355-378.

  5. Allen, J. J., Mathger, L. M., Barbosa, A., Buresch, K. C., Sogin, E., Schwartz, J., . . . Hanlon, R. T. (2010). Cuttlefish dynamic camouflage: Responses to substrate choice and integration of multiple visual cues. Proceedings. Biological Sciences, 277(1684), 1031-1039.

  6. Allman, J., Miezin, F., & McGuinness, E. (1985). Direction-and velocity-specific responses from beyond the classical receptive field in the middle temporal visual area (MT). Perception, 14(2), 105-126.

  7. Amo, L., López, P., & Martin, J. (2004). Wall lizards combine chemical and visual cues of ambush snake predators to avoid overestimating risk inside refuges. Animal Behaviour, 67(4), 647-653.

  8. Aquiloni, L., & Gherardi, F. (2010). Crayfish females eavesdrop on fighting males and use smell and sight to recognize the identity of the winner. Animal Behaviour, 79(2), 265-269.

  9. Baird, E., Srinivasan, M. V., Zhang, S., Lamont, R., & Cowling, A. (2006). Visual control of flight speed and height in the honeybee. Paper presented at the International Conference on Simulation of Adaptive Behavior, 40-51.

  10. Bartos, M., & Minias, P. (2016). Visual cues used in directing predatory strikes by the jumping spider yllenus arenarius (araneae, salticidae). Animal Behaviour, 120, 51-59.

  11. Ben-Simon, A., Ben-Shahar, O., Vasserman, G., Ben-Tov, M., & Segev, R. (2012a). Visual acuity in the archerfish: Behavior, anatomy, and neurophysiology. Journal of Vision, 12(12), 18-18.

  12. Ben-Simon, A., Ben-Shahar, O., Vasserman, G., Ben-Tov, M., & Segev, R. (2012b). Visual acuity in the archerfish: Behavior, anatomy, and neurophysiology. Journal of Vision, 12(12), 18-18.

  13. Ben-Tov, M., Ben-Shahar, O., & Segev, R. (2018). What a predator can teach us about visual processing: A lesson from the archerfish. Current Opinion in Neurobiology, 52, 80-87.

  14. Ben-Tov, M., Donchin, O., Ben-Shahar, O., & Segev, R. (2015). Pop-out in visual search of moving targets in the archer fish. Nature Communications, 6, 6476.

  15. Bichot, N. P., & Schall, J. D. (1999). Saccade target selection in macaque during feature and conjunction visual search. Visual Neuroscience, 16(1), 81-89.

  16. Blakemore, C., & Cooper, G. F. (1970). Development of the brain depends on the visual environment. Nature, 228(5270), 477.

  17. Blough, P. M. (1984). Visual search in pigeons: Effects of memory set size and display variables. Perception & Psychophysics, 35(4), 344-352.

  18. Blough, D. S. (1977). Visual search in the pigeon: Hunt and peck method. Science (New York, N.Y.), 196 (4293), 1013-1014.

  19. Bond, A. B., & Kamil, A. C. (1999). Searching image in blue jays: Facilitation and interference in sequential priming. Animal Learning & Behavior, 27(4), 461-471.

  20. Botly, L. C., & De Rosa, E. (2011). Impaired visual search in rats reveals cholinergic contributions to feature binding in visuospatial attention. Cerebral Cortex, 22(10), 2441-2453.

  21. Brainard, D. H., & Vision, S. (1997). The psychophysics toolbox. Spatial Vision, 10, 433-436.

  22. Buračas, G. T., & Albright, T. D. (1999). Covert visual search: A comparison of performance by humans and macaques (macaca mulatta). Behavioral Neuroscience, 113(3), 451.

  23. Calabrese, G. M., Brady, P. C., Gruev, V., & Cummings, M. E. (2014). Polarization signaling in swordtails alters female mate preference. Proceedings of the National Academy of Sciences of the United States of America, 111(37), 13397-13402.

  24. Cheney, K. L. (2010). Multiple selective pressures apply to a coral reef fish mimic: A case of batesian-aggressive mimicry. Proceedings.Biological Sciences, 277(1689), 1849-1855.

  25. Collett, T. (1987). The use of visual landmarks by gerbils: Reaching a goal when landmarks are displaced. Journal of Comparative Physiology A, 160(1), 109-113.

  26. Cook, R. G., Cavoto, K. K., & Cavoto, B. R. (1996). Mechanisms of multidimensional grouping, fusion, and search in avian texture discrimination. Animal Learning & Behavior, 24(2), 150-167.

  27. Dacke, M., Baird, E., Byrne, M., Scholtz, C. H., & Warrant, E. J. (2013). Dung beetles use the milky way for orientation. Current Biology, 23(4), 298-300.

  28. Dacke, M., Nilsson, D., Scholtz, C. H., Byrne, M., & Warrant, E. J. (2003). Animal behaviour: Insect orientation to polarized moonlight. Nature, 424(6944), 33.

  29. Darmaillacq, A., Mezrai, N., O'Brien, C. E., & Dickel, L. (2017). Visual ecology and the development of visually guided behavior in the cuttlefish. Frontiers in Physiology, 8, 402.

  30. Dickinson, J. E., Haley, K., Bowden, V. K., & Badcock, D. R. (2018). Visual search reveals a critical component to shape. Journal of Vision, 18(2), 2-2.

  31. Döring, T. F., & Chittka, L. (2007). Visual ecology of aphids—a critical review on the role of colours in host finding. Arthropod-Plant Interactions, 1(1), 3-16.

  32. Douglas, R., & Djamgoz, M. (2012). The visual system of fish Springer Science & Business Media.

  33. Duncan, J., & Humphreys, G. W. (1989). Visual search and stimulus similarity. Psychological Review, 96(3), 433.

  34. Eastwood, J. D., Smilek, D., & Merikle, P. M. (2001). Differential attentional guidance by unattended faces expressing positive and negative emotion. Perception & Psychophysics, 63(6), 1004-1013.

  35. Eckstein, M. P. (1998). The lower visual search efficiency for conjunctions is due to noise and not serial attentional processing. Psychological Science, 9(2), 111-118.

  36. Eckstein, M. P. (2011). Visual search: A retrospective. Journal of Vision, 11(5), 14-14.

  37. Egelhaaf, M. (2006). The neural computation of visual motion information. Invertebrate Vision,

  38. Fuss, T., Bleckmann, H., & Schluessel, V. (2014). The brain creates illusions not just for us: Sharks (chiloscyllium griseum) can “see the magic” as well. Frontiers in Neural Circuits, 8, 24.

  39. Gabay, S., Leibovich, T., Ben-Simon, A., Henik, A., & Segev, R. (2013). Inhibition of return in the archer fish. Nature Communications, 4, 1657.

  40. Garm, A., & Nilsson, D. E. (2014). Visual navigation in starfish: First evidence for the use of vision and eyes in starfish. Proceedings.Biological Sciences, 281(1777), 20133011.

  41. Gibson, J. J. (2014). The ecological approach to visual perception: Classic edition Psychology Press.

  42. Goto, K., Bond, A. B., Burks, M., & Kamil, A. C. (2014). Visual search and attention in blue jays (cyanocitta cristata): Associative cuing and sequential priming. Journal of Experimental Psychology: Animal Learning and Cognition, 40(2), 185.

  43. Harmening, W. M., Orlowski, J., Ben-Shahar, O., & Wagner, H. (2011). Overt attention toward oriented objects in free-viewing barn owls. Proceedings of the National Academy of Sciences of the United States of America, 108(20), 8461-8466.

  44. Hart, N. S. (2001). The visual ecology of avian photoreceptors. Progress in Retinal and Eye Research, 20(5), 675-703.

  45. Heiling, A. M., Cheng, K., Chittka, L., Goeth, A., & Herberstein, M. E. (2005). The role of UV in crab spider signals: Effects on perception by prey and predators. The Journal of Experimental Biology, 208(Pt 20), 3925-3931.

  46. Heitz, R. P., & Schall, J. D. (2013). Neural chronometry and coherency across speed-accuracy demands reveal lack of homomorphism between computational and neural mechanisms of evidence accumulation. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 368(1628), 20130071.

  47. Hershler, O., & Hochstein, S. (2005). At first sight: A high-level pop out effect for faces. Vision Research, 45(13), 1707-1724.

  48. Hochstein, S., & Ahissar, M. (2002). View from the top: Hierarchies and reverse hierarchies in the visual system. Neuron, 36(5), 791-804.

  49. Honkavaara, J., Koivula, M., Korpimäki, E., Siitari, H., & Viitala, J. (2002). Ultraviolet vision and foraging in terrestrial vertebrates. Oikos, 98(3), 505-511.

  50. Horner, A. E., Heath, C. J., Hvoslef-Eide, M., Kent, B. A., Kim, C. H., Nilsson, S. R., . . . Saksida, L. M. (2013). The touchscreen operant platform for testing learning and memory in rats and mice. Nature Protocols, 8(10), 1961.

  51. Horváth, G., Horváth, G., Varju, D., & Horváth, G. (2004). Polarized light in animal vision: Polarization patterns in nature Springer Science & Business Media.

  52. Isbell, L. A. (2006). Snakes as agents of evolutionary change in primate brains. Journal of Human Evolution, 51(1), 1-35.

  53. Isbell, L. A. (2009). The fruit, the tree, and the serpent. Harvard University Press.

  54. Itti, L., Koch, C., & Niebur, E. (1998). A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(11), 1254-1259.

  55. Karoubi, N., Segev, R., & Wullimann, M. F. (2016). The brain of the archerfish toxotes chatareus: A nissl-based neuroanatomical atlas and catecholaminergic/cholinergic systems. Frontiers in Neuroanatomy, 10, 106.

  56. Kastner, S., Nothdurft, H., & Pigarev, I. N. (1997). Neuronal correlates of pop-out in cat striate cortex. Vision Research, 37(4), 371-376.

  57. Kastner, S., Nothdurft, H., & Pigarev, I. N. (1999). Neuronal responses to orientation and motion contrast in cat striate cortex. Visual Neuroscience, 16(3), 587-600.

  58. Kesner, R. P. (2012). Parietal lesions produce illusory conjunction errors in rats. Frontiers in Integrative Neuroscience, 6, 22.

  59. Knierim, J. J., & van Essen, D. C. (1992). Neuronal responses to static texture patterns in area V1 of the alert macaque monkey. Journal of Neurophysiology, 67(4), 961-980.

  60. Leonhardt, A. (2017). Circuits and Algorithms Underlying Drosophila Motion Vision in Natural Environments,

  61. LoBue, V., & DeLoache, J. S. (2008). Detecting the snake in the grass: Attention to fear-relevant stimuli by adults and young children. Psychological Science, 19(3), 284-289.

  62. MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. Paper presented at the Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, 1(14) 281-297.

  63. Malinowski, P., & Hübner, R. (2001). The effect of familiarity on visual-search performance: Evidence for learned basic features. Perception & Psychophysics, 63(3), 458-463.

  64. Marshall, J., Carleton, K. L., & Cronin, T. (2015). Colour vision in marine organisms. Current Opinion in Neurobiology, 34, 86-94.

  65. Matsuno, T., & Tomonaga, M. (2006). Visual search for moving and stationary items in chimpanzees (pan troglodytes) and humans (homo sapiens). Behavioural Brain Research, 172(2), 219-232.

  66. Mitroff, S. R., Biggs, A. T., Adamo, S. H., Dowd, E. W., Winkle, J., & Clark, K. (2015). What can 1 billion trials tell us about visual search? Journal of Experimental Psychology: Human Perception and Performance, 41(1), 1.

  67. Mokeichev, A., Segev, R., & Ben-Shahar, O. (2010). Orientation saliency without visual cortex and target selection in archer fish. Proceedings of the National Academy of Sciences of the United States of America, 107(38), 16726-16731.

  68. Morawetz, L., & Spaethe, J. (2012). Visual attention in a complex search task differs between honeybees and bumblebees. The Journal of Experimental Biology, 215(Pt 14), 2515-2523.

  69. Murali, G. (2018). Now you see me, now you don't: Dynamic flash coloration as an antipredator strategy in motion. Animal Behaviour, 142, 207-220.

  70. Nakayama, K., & Silverman, G. H. (1986). Serial and parallel processing of visual feature conjunctions. Nature, 320(6059), 264-265.

  71. Newport, C., Wallis, G., Temple, S. E., & Siebeck, U. E. (2013). Complex, context-dependent decision strategies of archerfish, toxotes chatareus. Animal Behaviour, 86(6), 1265-1274.

  72. Nothdurft, H., Gallant, J. L., & Van Essen, D. C. (1999). Response modulation by texture surround in primate area V1: Correlates of “popout” under anesthesia. Visual Neuroscience, 16(1), 15-34.

  73. Nothdurft, H., Pigarev, I. N., & Kastner, S. (2009). Overt and covert visual search in primates: Reaction times and gaze shift strategies. Journal of Integrative Neuroscience, 8(02), 137-174.

  74. Öhman, A., Flykt, A., & Esteves, F. (2001a). Emotion drives attention: Detecting the snake in the grass. Journal of Experimental Psychology: General, 130(3), 466.

  75. Öhman, A., Lundqvist, D., & Esteves, F. (2001b). The face in the crowd revisited: A threat advantage with schematic stimuli. Journal of Personality and Social Psychology, 80(3), 381.

  76. Orlowski, J., Beissel, C., Rohn, F., Adato, Y., Wagner, H., & Ben-Shahar, O. (2015). Visual pop-out in barn owls: Human-like behavior in the avian brain. Journal of Vision, 15(14), 4-4.

  77. Orlowski, J., Ben-Shahar, O., & Wagner, H. (2018). Visual search in barn owls: Task difficulty and saccadic behavior. Journal of Vision, 18(1), 4-4.

  78. Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9(1), 62-66.

  79. Philippides, A., Baddeley, B., Cheng, K., & Graham, P. (2011). How might ants use panoramic views for route navigation? The Journal of Experimental Biology, 214(Pt 3), 445-451.

  80. Proulx, M. J., Parker, M. O., Tahir, Y., & Brennan, C. H. (2014). Parallel mechanisms for visual search in zebrafish. PLoS One, 9(10), e111540.

  81. Reichenthal, A., Ben-Tov, M., Ben-Shahar, O., & Segev, R. (2019). What pops out for you pops out for fish: Four common visual features. Journal of Vision, 19(1), 1-1.

  82. Rich, A. N., Kunar, M. A., Van Wert, M. J., Hidalgo-Sotelo, B., Horowitz, T. S., & Wolfe, J. M. (2008). Why do we miss rare targets? exploring the boundaries of the low prevalence effect. Journal of Vision, 8, 15-15.

  83. Ringach, D. L. (2002). Spatial structure and symmetry of simple-cell receptive fields in macaque primary visual cortex. Journal of Neurophysiology, 88(1), 455-463.

  84. Rischawy, I., & Schuster, S. (2013). Visual search in hunting archerfish shares all hallmarks of human performance. The Journal of Experimental Biology, 216(Pt 16), 3096-3103.

  85. Rossel, S., Corlija, J., & Schuster, S. (2002). Predicting three-dimensional target motion: How archer fish determine where to catch their dislodged prey. The Journal of Experimental Biology, 205(Pt 21), 3321-3326.

  86. Sandström, A. (1999). Visual ecology of fish–a review with special reference to percids. Fiskeriverket Rapport, 2, 45-80.

  87. Schlegel, T., & Schuster, S. (2008). Small circuits for large tasks: High-speed decision-making in archerfish. Science (New York, N.Y.), 319(5859), 104-106.

  88. Schultz, T. D., Anderson, C. N., & Symes, L. B. (2008). The conspicuousness of colour cues in male pond damselflies depends on ambient light and visual system. Animal Behaviour, 76(4), 1357-1364.

  89. Schuster, S., Rossel, S., Schmidtmann, A., Jäger, I., & Poralla, J. (2004a). Archer fish learn to compensate for complex optical distortions to determine the absolute size of their aerial prey. Current Biology, 14(17), 1565-1568.

  90. Schuster, S., Rossel, S., Schmidtmann, A., Jäger, I., & Poralla, J. (2004b). Archer fish learn to compensate for complex optical distortions to determine the absolute size of their aerial prey. Current Biology, 14(17), 1565-1568.

  91. Schwarz, S., Mangan, M., Zeil, J., Webb, B., & Wystrach, A. (2017). How ants use vision when homing backward. Current Biology, 27(3), 401-407.

  92. Schwind, R. (1991). Polarization vision in water insects and insects living on a moist substrate. Journal of Comparative Physiology A, 169(5), 531-540.

  93. Shen, J., & Reingold, E. M. (2001). Visual search asymmetry: The influence of stimulus familiarity and low-level features. Perception & Psychophysics, 63(3), 464-475.

  94. Shibasaki, M., & Kawai, N. (2009). Rapid detection of snakes by japanese monkeys (macaca fuscata): An evolutionarily predisposed visual system. Journal of Comparative Psychology, 123(2), 131.

  95. Shiffrin, R. M., & Schneider, W. (1977). Controlled and automatic human information processing: II. perceptual learning, automatic attending and a general theory. Psychological Review, 84(2), 127.

  96. Si, A., Srinivasan, M. V., & Zhang, S. (2003). Honeybee navigation: Properties of the visually driven 'odometer'. The Journal of Experimental Biology, 206(Pt 8), 1265-1273.

  97. Simon, K., & Mazlan, A. (2010). Trophic position of archerfish species (toxotes chatareus and toxotes jaculatrix) in the malaysian estuaries. Journal of Applied Ichthyology, 26(1), 84-88.

  98. Simpson, E. E., Marshall, N. J., & Cheney, K. L. (2016). Coral reef fish perceive lightness illusions. Scientific Reports, 6, 35335.

  99. Sjöström, P. (1985). Hunting behaviour of the perlid stonefly nymph dinocras cephalotes (plecoptera) under different light conditions. Animal Behaviour, 33(2), 534-540.

  100. Slllito, A. M., Grieve, K. L., Jones, H. E., Cudeiro, J., & Davls, J. (1995). Visual cortical mechanisms detecting focal orientation discontinuities. Nature, 378(6556), 492.

  101. Smolka, J., Zeil, J., & Hemmi, J. M. (2011). Natural visual cues eliciting predator avoidance in fiddler crabs. Proceedings.Biological Sciences, 278(1724), 3584-3592.

  102. Snigdha, S., Christie, L., De Rivera, C., Araujo, J. A., Milgram, N. W., & Cotman, C. W. (2012). Age and distraction are determinants of performance on a novel visual-search task in aged beagle dogs. Age, 34(1), 67-73.

  103. Somanathan, H., Borges, R. M., Warrant, E. J., & Kelber, A. (2008). Visual ecology of indian carpenter bees I: Light intensities and flight activity. Journal of Comparative Physiology A, 194(1), 97.

  104. Somanathan, H., Kelber, A., Borges, R. M., Wallén, R., & Warrant, E. J. (2009). Visual ecology of indian carpenter bees II: Adaptations of eyes and ocelli to nocturnal and diurnal lifestyles. Journal of Comparative Physiology A, 195(6), 571-583.

  105. Spaethe, J., Tautz, J., & Chittka, L. (2006). Do honeybees detect colour targets using serial or parallel visual search? The Journal of Experimental Biology, 209(Pt 6), 987-993.

  106. Srinivasan, M., Zhang, S., Lehrer, M., & Collett, T. (1996a). Honeybee navigation en route to the goal: Visual flight control and odometry. The Journal of Experimental Biology, 199 (Pt 1), 237-244.

  107. Srinivasan, M., Zhang, S., Lehrer, M., & Collett, T. (1996b). Honeybee navigation en route to the goal: Visual flight control and odometry. The Journal of Experimental Biology, 199 (Pt 1), 237-244.

  108. Sunder, S., & Arun, S. (2016). Look before you seek: Preview adds a fixed benefit to all searches. Journal of Vision, 16(15), 3-3.

  109. Surmacki, A., Ożarowska-Nowicka, A., & Rosin, Z. M. (2013). Color polymorphism in a land snail cepaea nemoralis (pulmonata: Helicidae) as viewed by potential avian predators. Naturwissenschaften, 100(6), 533-540.

  110. Sztatecsny, M., Strondl, C., Baierl, A., Ries, C., & Hödl, W. (2010). Chin up: Are the bright throats of male common frogs a condition-independent visual cue? Animal Behaviour, 79(4), 779-786.

  111. Temple, S., Hart, N. S., Marshall, N. J., & Collin, S. P. (2010). A spitting image: Specializations in archerfish eyes for vision at the interface between air and water. Proceedings.Biological Sciences, 277(1694), 2607-2615.

  112. Théry, M., & Casas, J. (2002). Visual systems: Predator and prey views of spider camouflage. Nature, 415(6868), 133.

  113. Théry, M., Debut, M., Gomez, D., & Casas, J. (2004). Specific color sensitivities of prey and predator explain camouflage in different visual systems. Behavioral Ecology, 16(1), 25-29.

  114. Tomonaga, M. (1998). Perception of shape from shading in chimpanzees (pan troglodytes) and humans (homo sapiens). Animal Cognition, 1(1), 25-35.

  115. Tomonaga, M. (2007). Visual search for orientation of faces by a chimpanzee (pan troglodytes): Face-specific upright superiority and the role of facial configural properties. Primates, 48(1), 1-12.

  116. Tomonaga, M., & Imura, T. (2015). Efficient search for a face by chimpanzees (pan troglodytes). Scientific Reports, 5, 11437.

  117. Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12(1), 97-136.

  118. Treisman, A., & Gormican, S. (1988). Feature analysis in early vision: Evidence from search asymmetries. Psychological Review, 95(1), 15.

  119. Treisman, A., & Sato, S. (1990). Conjunction search revisited. Journal of Experimental Psychology: Human Perception and Performance, 16(3), 459.

  120. Treisman, A., & Souther, J. (1985). Search asymmetry: A diagnostic for preattentive processing of separable features. Journal of Experimental Psychology: General, 114(3), 285.

  121. Tsvilling, V., Donchin, O., Shamir, M., & Segev, R. (2012). Archer fish fast hunting maneuver may be guided by directionally selective retinal ganglion cells. European Journal of Neuroscience, 35(3), 436-444.

  122. Vasserman, G., Shamir, M., Simon, A. B., & Segev, R. (2010). Coding “what” and “when” in the archer fish retina. PLoS Computational Biology, 6(11), e1000977.

  123. Wardak, C., Ben Hamed, S., Olivier, E., & Duhamel, J. (2012). Differential effects of parietal and frontal inactivations on reaction times distributions in a visual-search task. Frontiers in Integrative Neuroscience, 6, 39.

  124. Wilkinson, F. (1986). Visual texture segmentation in cats. Behavioural Brain Research, 19(1), 71-82.

  125. Wolfe, J. M. (1994). Guided search 2.0 a revised model of visual search. Psychonomic Bulletin & Review, 1(2), 202-238.

  126. Wolfe, J. M. (1998a). Visual search. Attention, 1, 13-73.

  127. Wolfe, J. M. (1998b). What can 1 million trials tell us about visual search? Psychological Science, 9(1), 33-39.

  128. Wolfe, J. M. (2001a). Asymmetries in visual search: An introduction. Perception & Psychophysics, 63(3), 381-389.

  129. Wolfe, J. M. (2001b). Asymmetries in visual search: An introduction. Perception & Psychophysics, 63(3), 381-389.

  130. Wolfe, J. M., & Horowitz, T. S. (2004). What attributes guide the deployment of visual attention and how do they do it? Nature Reviews Neuroscience, 5(6), 495.

  131. Wolfe, J. M., & Horowitz, T. S. (2017). Five factors that guide attention in visual search. Nature Human Behaviour, 1(3), 0058.

  132. Wyzisk, K., & Neumeyer, C. (2007). Perception of illusory surfaces and contours in goldfish. Visual Neuroscience, 24(3), 291-298.

  133. Xu, T., Wang, L., Song, X., & Li, C. (2013). The detection of orientation continuity and discontinuity by cat V1 neurons. PloS One, 8(11), e79723.

  134. Zeil, J., & Hemmi, J. M. (2006). The visual ecology of fiddler crabs. Journal of Comparative Physiology A, 192(1), 1-25.

  135. Zhang, S., Yip, H., Lee, M., Liu, L., Piorkowski, D., Liao, C., & Tso, I. (2018). Vision-mediated courtship in a nocturnal arthropod. Animal Behaviour, 142, 185-190.

Download references

Acknowledgements

We thank Gustavo Glusman for technical assistance and the research assistants Zohar Bromberg, Daniel Deitch, and Noy Gold Hamer for their dedicated work with the fish. We gratefully acknowledge financial support from the Israel Science Foundation (grant No. 211/15), the Israel Science Foundation-FIRST program (grant No. 281/15), the Israel Science Foundation-FIRST program (grant No. 555/19), the Binational Science Foundation (BSF) grant no. 2011058, the Frankel Fund at the Computer Science Department, the Helmsley Charitable Trust through the Agricultural, Biological and Cognitive Robotics Initiative, and the Zlotowski Center for Neuroscience Research of Ben-Gurion University of the Negev.

Author information

Correspondence to Ohad Ben-Shahar.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Reichenthal, A., Segev, R. & Ben-Shahar, O. Feature integration theory in non-humans: Spotlight on the archerfish. Atten Percept Psychophys (2020). https://doi.org/10.3758/s13414-019-01884-4

Download citation

Keywords

  • Feature integration theory
  • Visual search
  • Reaction times
  • Response times
  • Serial search
  • Parallel search
  • Pop-out
  • Conjunction search
  • Shape search
  • Visual attention
  • Selective attention
  • Vision
  • Archerfish