Advertisement

Visual objects interact differently during encoding and memory maintenance

  • Stefan CzoschkeEmail author
  • Benjamin Peters
  • Benjamin Rahm
  • Jochen Kaiser
  • Christoph Bledowski
Article

Abstract

The storage mechanisms of working memory are the matter of an ongoing debate. The sensory recruitment hypothesis states that memory maintenance and perceptual encoding rely on the same neural substrate. This suggests that the same cortical mechanisms that shape object perception also apply to maintained memory content. We tested this prediction using the Direction Illusion, i.e., the mutual repulsion of two concurrently visible motion directions. Participants memorized the directions of two random dot patterns for later recall. In Experiments 1 and 2, we varied the temporal separation of spatially distinct stimuli to manipulate perceptual concurrency, while keeping concurrency within working memory constant. We observed mutual motion repulsion only under simultaneous stimulus presentation, but proactive repulsion and retroactive attraction under immediate stimulus succession. At inter-stimulus intervals of 0.5 and 2 s, however, proactive repulsion vanished, while the retroactive attraction remained. In Experiment 3, we presented both stimuli at the same spatial position and observed a reappearance of the repulsion effect. Our results indicate that the repulsive mechanisms that shape object perception across space fade during the transition from a perceptual representation to a consolidated memory content. This suggests differences in the underlying structure of perceptual and mnemonic representations. The persistence of local interactions, however, indicates different mechanisms of spatially global and local feature interactions.

Keywords

Working memory Sensory recruitment Bias Motion repulsion Direction illusion 

Notes

Acknowledgements

We thank Victoria Anschütz, Julia Balles, and Cora Fischer for their help with data acquisition.

Open Practices Statement

Data or materials for the experiments reported here are available upon request. None of the experiments was preregistered.

Supplementary material

13414_2019_1861_MOESM1_ESM.docx (840 kb)
ESM 1 (DOCX 840 kb)

References

  1. Alais, D., Apthorp, D., Karmann, A., & Cass, J. (2011). Temporal integration of movement: the time-course of motion streaks revealed by masking. PloS one, 6(12), e28675.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Allman, J., Miezin, F., & McGuinness, E. (1985). Stimulus specific responses from beyond the classical receptive field: neurophysiological mechanisms for local-global comparisons in visual neurons. Annual Review of Neuroscience, 8(1), 407-430.CrossRefPubMedGoogle Scholar
  3. Appelle, S. (1972). Perception and discrimination as a function of stimulus orientation: the" oblique effect" in man and animals. Psychological Bulletin, 78(4), 266.CrossRefPubMedGoogle Scholar
  4. Bae, G. Y., & Luck, S. J. (2017). Interactions between visual working memory representations. Attention, Perception, & Psychophysics, 79(8), 2376-2395.CrossRefGoogle Scholar
  5. Bankó, É. M., & Vidnyánszky, Z. (2010). Retention interval affects visual short-term memory encoding. Journal of Neurophysiology, 103(3), 1425-1430.CrossRefPubMedGoogle Scholar
  6. Barbosa, J., & Compte, A. (2018). Build-up of serial dependence in color working memory. bioRxiv, 503185.Google Scholar
  7. Bays, P. M. (2016). Evaluating and excluding swap errors in analogue tests of working memory. Scientific Reports, 6, 19203.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bays, P. M., Catalao, R. F., & Husain, M. (2009). The precision of visual working memory is set by allocation of a shared resource. Journal of Vision, 9(10), 7-7.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Benton, C. P., & Curran, W. (2003). Direction repulsion goes global. Current Biology, 13(9), 767-771.CrossRefPubMedGoogle Scholar
  10. Blakemore, C., & Tobin, E. A. (1972). Lateral inhibition between orientation detectors in the cat's visual cortex. Experimental Brain Research, 15(4), 439-440.CrossRefPubMedGoogle Scholar
  11. Blakemore, C., Carpenter, R. H., & Georgeson, M. A. (1970). Lateral inhibition between orientation detectors in the human visual system. Nature, 228(5266), 37.CrossRefPubMedGoogle Scholar
  12. Bliss, D. P., Sun, J. J., & D’Esposito, M. (2017). Serial dependence is absent at the time of perception but increases in visual working memory. Scientific reports, 7(1), 14739.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Bloem, I. M., Watanabe, Y. L., Kibbe, M. M., & Ling, S. (2018). Visual memories bypass normalization. Psychological Science, 29(5), 845-856.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Born, R. T., & Tootell, R. B. (1992). Segregation of global and local motion processing in primate middle temporal visual area. Nature, 357(6378), 497.CrossRefPubMedGoogle Scholar
  15. Braddick, O. J., Wishart, K. A., & Curran, W. (2002). Directional performance in motion transparency. Vision Research, 42(10), 1237-1248.CrossRefPubMedGoogle Scholar
  16. Brainard, D. H. (1997). The psychophysics toolbox. Spatial vision, 10, 433-436.CrossRefPubMedGoogle Scholar
  17. Burr, D. (1980). Motion smear. Nature, 284(5752), 164.CrossRefPubMedGoogle Scholar
  18. Christophel, T. B., Hebart, M. N., & Haynes, J. D. (2012). Decoding the contents of visual short-term memory from human visual and parietal cortex. Journal of Neuroscience, 32(38), 12983-12989.CrossRefPubMedGoogle Scholar
  19. Coltheart, M. (1980). Iconic memory and visible persistence. Perception & Psychophysics, 27(3), 183-228.CrossRefGoogle Scholar
  20. Curran, W., Clifford, C. W., & Benton, C. P. (2006). The direction aftereffect is driven by adaptation of local motion detectors. Vision Research, 46(25), 4270-4278.CrossRefPubMedGoogle Scholar
  21. Curran, W., Clifford, C. W., & Benton, C. P. (2008). The hierarchy of directional interactions in visual motion processing. Proceedings of the Royal Society B: Biological Sciences, 276(1655), 263-268.CrossRefGoogle Scholar
  22. Czoschke, S., Fischer, C., Beitner, J., Kaiser, J., & Bledowski, C. (2019). Two types of serial dependence in visual working memory. British Journal of Psychology, 110(2), 256-267.CrossRefPubMedGoogle Scholar
  23. Di Lollo, V. (1977). Temporal characteristics of iconic memory. Nature, 267(5608), 241.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Di Lollo, V. (1980). Temporal integration in visual memory. Journal of Experimental Psychology: General, 109(1), 75.CrossRefGoogle Scholar
  25. Dubé, C., Zhou, F., Kahana, M. J., & Sekuler, R. (2014). Similarity-based distortion of visual short-term memory is due to perceptual averaging. Vision Research, 96, 8-16.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Eifuku, S., & Wurtz, R. H. (1998). Response to motion in extrastriate area MSTl: center-surround interactions. Journal of Neurophysiology, 80(1), 282-296.CrossRefPubMedGoogle Scholar
  27. Ejima, Y., & Takahashi, S. (1985). Apparent contrast of a sinusoidal grating in the simultaneous presence of peripheral gratings. Vision Research, 25(9), 1223-1232.CrossRefPubMedGoogle Scholar
  28. Emrich, S. M., Riggall, A. C., LaRocque, J. J., & Postle, B. R. (2013). Distributed patterns of activity in sensory cortex reflect the precision of multiple items maintained in visual short-term memory. Journal of Neuroscience, 33(15), 6516-6523.CrossRefPubMedGoogle Scholar
  29. Farrell-Whelan, M., Wenderoth, P., & Brooks, K. R. (2012). The hierarchical order of processes underlying the direction illusion and the direction aftereffect. Perception, 41(4), 389-401.CrossRefPubMedGoogle Scholar
  30. Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175-191.CrossRefPubMedGoogle Scholar
  31. Fischer, C., Czoschke, S., Peters, B., Rahm, B., Kaiser, J., & Bledowski, C. (2019). Context information supports serial dependence of multiple visual objects across memory episodes. bioRxiv.Google Scholar
  32. Fischer, J., & Whitney, D. (2014). Serial dependence in visual perception. Nature neuroscience, 17(5), 738.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Foster, J. J., Bsales, E. M., Jaffe, R. J., & Awh, E. (2017). Alpha-band activity reveals spontaneous representations of spatial position in visual working memory. Current Biology, 27(20), 3216-3223.CrossRefPubMedGoogle Scholar
  34. Fornaciai, M., & Park, J. (2018). Serial dependence in numerosity perception. Journal of vision, 18(9), 15-15.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Fornaciai, M., & Park, J. (2019). Spontaneous repulsive adaptation in the absence of attractive serial dependence. Journal of vision, 19(5), 21-21.CrossRefPubMedGoogle Scholar
  36. Fritsche, M., Mostert, P., & de Lange, F. P. (2017). Opposite effects of recent history on perception and decision. Current Biology, 27(4), 590-595.CrossRefPubMedGoogle Scholar
  37. Gayet, S., Paffen, C. L., & Van der Stigchel, S. (2018). Visual working memory storage recruits sensory processing areas. Trends in Cognitive Sciences, 22(3), 189-190.CrossRefPubMedGoogle Scholar
  38. Gilbert, C. D. (1992). Horizontal integration and cortical dynamics. Neuron, 9(1), 1-13.CrossRefPubMedGoogle Scholar
  39. Glasser, D. M., Tsui, J. M., Pack, C. C., & Tadin, D. (2011). Perceptual and neural consequences of rapid motion adaptation. Proceedings of the National Academy of Sciences, 108(45), E1080-E1088.CrossRefGoogle Scholar
  40. Gros, B. L., Blake, R., & Hiris, E. (1998). Anisotropies in visual motion perception: a fresh look. JOSA A, 15(8), 2003-2011.CrossRefPubMedGoogle Scholar
  41. Harrison, S. A., & Tong, F. (2009). Decoding reveals the contents of visual working memory in early visual areas. Nature, 458(7238), 632.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Harrison, W. J., & Bays, P. M. (2018). Visual working memory is independent of the cortical spacing between memoranda. Journal of Neuroscience, 2645-17.Google Scholar
  43. Hollingworth, A. (2006). Scene and position specificity in visual memory for objects. Journal of Experimental Psychology: Learning, Memory, and Cognition, 32(1), 58.Google Scholar
  44. Hollingworth, A. (2007). Object-position binding in visual memory for natural scenes and object arrays. Journal of Experimental Psychology: Human Perception and Performance, 33(1), 31.PubMedGoogle Scholar
  45. Huang, J., & Sekuler, R. (2010). Distortions in recall from visual memory: Two classes of attractors at work. Journal of Vision, 10(2), 24-24.CrossRefPubMedPubMedCentralGoogle Scholar
  46. JASP Team (2018). JASP (Version 0.9.1) [Computer software].Google Scholar
  47. Kanai, R., & Verstraten, F. A. (2005). Perceptual manifestations of fast neural plasticity: Motion priming, rapid motion aftereffect and perceptual sensitization. Vision Research, 45(25-26), 3109-3116.CrossRefPubMedGoogle Scholar
  48. Kang, M. S., & Choi, J. (2015). Retrieval-induced inhibition in short-term memory. Psychological Science, 26(7), 1014-1025.CrossRefPubMedGoogle Scholar
  49. Kang, M. S., Hong, S. W., Blake, R., & Woodman, G. F. (2011). Visual working memory contaminates perception. Psychonomic Bulletin & Review, 18(5), 860-869.CrossRefGoogle Scholar
  50. Kass, R.E., & Raftery, A.E. (1995). Bayes factors. Journal of the American Statistical Association, 90(430), 773–795. doi: https://doi.org/10.1080/01621459.1995.10476572 CrossRefGoogle Scholar
  51. Kim, J., & Wilson, H. R. (1997). Motion integration over space: interaction of the center and surround motion. Vision Research, 37(8), 991-1005.CrossRefPubMedGoogle Scholar
  52. Klauke, S., & Wachtler, T. (2015). “Tilt” in color space: hue changes induced by chromatic surrounds. Journal of Vision, 15(13), 17-17.CrossRefPubMedGoogle Scholar
  53. Lakshminarayanan, V., Raghuram, A., & Khanna, R. (2005). Psychophysical estimation of speed discrimination. I. Methodology. JOSA A, 22(10), 2262-2268.Google Scholar
  54. LaRocque, J. J., Riggall, A. C., Emrich, S. M., & Postle, B. R. (2016). Within-category decoding of information in different attentional states in short-term memory. Cerebral Cortex, 27(10), 4881-4890.Google Scholar
  55. Levinson, E., & Sekuler, R. (1976). Adaptation alters perceived direction of motion. Vision Research.Google Scholar
  56. Lewis-Peacock, J. A., Drysdale, A. T., Oberauer, K., & Postle, B. R. (2012). Neural evidence for a distinction between short-term memory and the focus of attention. Journal of Cognitive Neuroscience, 24(1), 61-79.CrossRefPubMedGoogle Scholar
  57. Li, C. Y., Lei, J. J., & Yao, H. S. (1999). Shift in speed selectivity of visual cortical neurons: a neural basis of perceived motion contrast. Proceedings of the National Academy of Sciences, 96(7), 4052-4056.CrossRefGoogle Scholar
  58. Liberman, A., Fischer, J., & Whitney, D. (2014). Serial dependence in the perception of faces. Current Biology, 24(21), 2569-2574.CrossRefPubMedGoogle Scholar
  59. Loomis, J. M., & Nakayama, K. (1973). A velocity analogue of brightness contrast. Perception, 2(4), 425-428.CrossRefPubMedGoogle Scholar
  60. Lorenc, E. S., Sreenivasan, K. K., Nee, D. E., Vandenbroucke, A. R., & D'Esposito, M. (2018). Flexible coding of visual working memory representations during distraction. Journal of Neuroscience, 3061-17.Google Scholar
  61. Luce, R. D., & Edwards, W. (1958). The derivation of subjective scales from just noticeable differences. Psychological Review, 65(4), 222.CrossRefPubMedGoogle Scholar
  62. Marshak, W., & Sekuler, R. (1979). Mutual repulsion between moving visual targets. Science, 205(4413), 1399-1401.CrossRefPubMedGoogle Scholar
  63. Mather, G. (1980). The movement aftereffect and a distribution-shift model for coding the direction of visual movement. Perception, 9(4), 379-392.CrossRefPubMedGoogle Scholar
  64. Mather, G., & Moulden, B. (1980). A simultaneous shift in apparent direction: further evidence for a “distribution-shift” model of direction coding. Quarterly Journal of Experimental Psychology, 32(2), 325-333.CrossRefPubMedGoogle Scholar
  65. Matthews, N., & Qian, N. (1999). Axis-of-motion affects direction discrimination, not speed discrimination. Vision Research, 39(13), 2205-2211.CrossRefPubMedGoogle Scholar
  66. Moisy, F. (2011). Ezyfit: a free curve fitting toolbox for matlab. U. Paris Sud. Version, 2.Google Scholar
  67. Morey, R. D., & Rouder, J. N. (2015). BayesFactor 0.9. 12-2. Comprehensive R Archive Network.Google Scholar
  68. Myers, N. E., Chekroud, S. R., Stokes, M. G., & Nobre, A. C. (2018). Benefits of flexible prioritization in working memory can arise without costs. Journal of Experimental Psychology: Human Perception and Performance, 44(3), 398-411.PubMedGoogle Scholar
  69. Nemes, V. A. (2013). A psychophysical investigation of human visual perceptual memory. A study of the retention of colour, spatial frequency and motion visual information by human visual short term memory mechanisms (Doctoral dissertation, University of Bradford).Google Scholar
  70. Nemes, V. A., Parry, N. R., Whitaker, D., & McKeefry, D. J. (2012). The retention and disruption of color information in human short-term visual memory. Journal of Vision, 12(1), 26-26.CrossRefPubMedGoogle Scholar
  71. Nemes, V. A., Whitaker, D., Heron, J., & McKeefry, D. J. (2011). Multiple spatial frequency channels in human visual perceptual memory. Vision Research, 51(23-24), 2331-2339.CrossRefPubMedGoogle Scholar
  72. Ono, F., & Watanabe, K. (2014). Shape-assimilation effect: retrospective distortion of visual shapes. Attention, Perception, & Psychophysics, 76(1), 5-10.CrossRefGoogle Scholar
  73. Pascucci, D., Mancuso, G., Santandrea, E., Della Libera, C., Plomp, G., & Chelazzi, L. (2019). Laws of concatenated perception: Vision goes for novelty, Decisions for perseverance. PLoS biology, 17(3), e3000144.CrossRefPubMedPubMedCentralGoogle Scholar
  74. Patterson, C. A., Wissig, S. C., & Kohn, A. (2013). Distinct effects of brief and prolonged adaptation on orientation tuning in primary visual cortex. Journal of Neuroscience, 33(2), 532-543.CrossRefPubMedGoogle Scholar
  75. Patterson, R., & Becker, S. (1996). Direction-selective adaptation and simultaneous contrast induced by stereoscopic (cyclopean) motion. Vision Research, 36(12), 1773-1781.CrossRefPubMedGoogle Scholar
  76. Pavan, A., Marotti, R. B., & Campana, G. (2012). The temporal course of recovery from brief (sub-second) adaptations to spatial contrast. Vision Research, 62, 116-124.CrossRefPubMedGoogle Scholar
  77. Pertzov, Y., Manohar, S., & Husain, M. (2017). Rapid forgetting results from competition over time between items in visual working memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 43(4), 528.PubMedGoogle Scholar
  78. Pratte, M. S., & Tong, F. (2014). Spatial specificity of working memory representations in the early visual cortex. Journal of Vision, 14(3), 22-22.CrossRefPubMedPubMedCentralGoogle Scholar
  79. Prins, N. & Kingdom, F.A.A. (2009). Palamedes: Matlab routines for analyzing psychophysical data. www.palamedestoolbox.org
  80. Rademaker, R. L., Bloem, I. M., De Weerd, P., & Sack, A. T. (2015). The impact of interference on short-term memory for visual orientation. Journal of Experimental Psychology: Human Perception and Performance, 41(6), 1650.PubMedGoogle Scholar
  81. Rademaker, R. L., Chunharas, C., & Serences, J. T. (2019). Coexisting representations of sensory and mnemonic information in human visual cortex. Nature neuroscience, 1.Google Scholar
  82. Raiguel, S., Van Hulle, M. M., Xiao, D. K., Marcar, V. L., & Orban, G. A. (1995). Shape and spatial distribution of receptive fields and antagonistic motion surrounds in the middle temporal area (V5) of the macaque. European Journal of Neuroscience, 7(10), 2064-2082.CrossRefPubMedGoogle Scholar
  83. Riggall, A. C., & Postle, B. R. (2012). The relationship between working memory storage and elevated activity as measured with functional magnetic resonance imaging. Journal of Neuroscience, 32(38), 12990-12998.CrossRefPubMedGoogle Scholar
  84. Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G. (2009). Bayesian t tests for accepting and rejecting the null hypothesis. Psychonomic bulletin & review, 16(2), 225-237.CrossRefGoogle Scholar
  85. Saad, E., & Silvanto, J. (2013). How visual short-term memory maintenance modulates subsequent visual aftereffects. Psychological Science, 24(5), 803-808.CrossRefPubMedGoogle Scholar
  86. Schneegans, S., Spencer, J. P., Schöner, G., Hwang, S., & Hollingworth, A. (2014). Dynamic interactions between visual working memory and saccade target selection. Journal of Vision, 14(11), 9-9.CrossRefPubMedPubMedCentralGoogle Scholar
  87. Schwartz, O., Hsu, A., & Dayan, P. (2007). Space and time in visual context. Nature Reviews Neuroscience, 8(7), 522.CrossRefPubMedGoogle Scholar
  88. Scimeca, J. M., Kiyonaga, A., & D’Esposito, M. (2018). Reaffirming the sensory recruitment account of working memory. Trends in Cognitive Sciences, 22(3), 190-192.CrossRefPubMedGoogle Scholar
  89. Scocchia, L., Cicchini, G. M., & Triesch, J. (2013). What’s “up”? Working memory contents can bias orientation processing. Vision Research, 78, 46-55.CrossRefPubMedGoogle Scholar
  90. Seidel Malkinson, T., Pertzov, Y., & Zohary, E. (2016). Turning Symbolic: The Representation of Motion Direction in Working Memory. Frontiers in Psychology, 7, 165.CrossRefPubMedPubMedCentralGoogle Scholar
  91. Serences, J. T., Ester, E. F., Vogel, E. K., & Awh, E. (2009). Stimulus-specific delay activity in human primary visual cortex. Psychological Science, 20(2), 207-214.CrossRefPubMedPubMedCentralGoogle Scholar
  92. Shioiri, S., & Cavanagh, P. (1992). Visual persistence of figures defined by relative motion. Vision Research, 32(5), 943-951.CrossRefPubMedPubMedCentralGoogle Scholar
  93. Shooner, C., Tripathy, S. P., Bedell, H. E., & Öğmen, H. (2010). High-capacity, transient retention of direction-of-motion information for multiple moving objects. Journal of Vision, 10(6), 8-8.CrossRefPubMedPubMedCentralGoogle Scholar
  94. Sneve, M. H., Alnæs, D., Endestad, T., Greenlee, M. W., & Magnussen, S. (2011). Modulation of activity in human visual area V1 during memory masking. PloS one, 6(4), e18651.CrossRefPubMedPubMedCentralGoogle Scholar
  95. Snowden, R. J., & Braddick, O. J. (1991). The temporal integration and resolution of velocity signals. Vision Research, 31(5), 907-914.CrossRefPubMedGoogle Scholar
  96. Sprague, T. C., Ester, E. F., & Serences, J. T. (2016). Restoring latent visual working memory representations in human cortex. Neuron, 91(3), 694-707.CrossRefPubMedPubMedCentralGoogle Scholar
  97. Störmer, V. S., & Alvarez, G. A. (2014). Feature-based attention elicits surround suppression in feature space. Current Biology, 24(17), 1985-1988.CrossRefPubMedGoogle Scholar
  98. Suchow, J. W., Brady, T. F., Fougnie, D., & Alvarez, G. A. (2013). Modeling visual working memory with the MemToolbox. Journal of Vision, 13(10), 9-9.CrossRefPubMedPubMedCentralGoogle Scholar
  99. Sugita, Y., Hidaka, S., & Teramoto, W. (2018). Visual percepts modify iconic memory in humans. Scientific Reports, 8(1), 13396.CrossRefPubMedPubMedCentralGoogle Scholar
  100. Tzvetanov, T., Womelsdorf, T., Niebergall, R., & Treue, S. (2006). Feature-based attention influences contextual interactions during motion repulsion. Vision Research, 46(21), 3651-3658.CrossRefPubMedGoogle Scholar
  101. Wachtler, T., Sejnowski, T. J., & Albright, T. D. (2003). Representation of color stimuli in awake macaque primary visual cortex. Neuron, 37(4), 681-691.CrossRefPubMedPubMedCentralGoogle Scholar
  102. Wenderoth, P., & Wiese, M. (2008). Retinotopic encoding of the direction aftereffect. Vision Research, 48(19), 1949-1954.CrossRefPubMedGoogle Scholar
  103. Wenderoth, P., O’Connor, T., & Johnson, M. (1986). The tilt illusion as a function of the relative and absolute lengths of test and inducing lines. Perception & Psychophysics, 39(5), 339-345.CrossRefGoogle Scholar
  104. Westheimer, G. (1990). Simultaneous orientation contrast for lines in the human fovea. Vision Research, 30(11), 1913-1921.CrossRefPubMedGoogle Scholar
  105. Wheeler, M. E., Petersen, S. E., & Buckner, R. L. (2000). Memory's echo: vivid remembering reactivates sensory-specific cortex. Proceedings of the National Academy of Sciences, 97(20), 11125-11129.CrossRefGoogle Scholar
  106. Wiese, M., & Wenderoth, P. (2007). The different mechanisms of the motion direction illusion and aftereffect. Vision Research, 47(14), 1963-1967.CrossRefPubMedGoogle Scholar
  107. Wiese, M., & Wenderoth, P. (2010). Dichoptic reduction of the direction illusion is not due to binocular rivalry. Vision Research, 50(18), 1824-1832.CrossRefPubMedGoogle Scholar
  108. Wildegger, T., Myers, N. E., Humphreys, G., & Nobre, A. C. (2015). Supraliminal but not subliminal distracters bias working memory recall. Journal of Experimental Psychology: Human Perception and Performance, 41(3), 826.PubMedGoogle Scholar
  109. Wolff, M. J., Jochim, J., Akyürek, E. G., & Stokes, M. G. (2017). Dynamic hidden states underlying working-memory-guided behavior. Nature Neuroscience, 20(6), 864.CrossRefPubMedPubMedCentralGoogle Scholar
  110. Xiao, J., & Huang, X. (2015). Distributed and dynamic neural encoding of multiple motion directions of transparently moving stimuli in cortical area MT. Journal of Neuroscience, 35(49), 16180-16198.CrossRefPubMedGoogle Scholar
  111. Xu, Y. (2017). Reevaluating the sensory account of visual working memory storage. Trends in Cognitive Sciences, 21(10), 794-815.CrossRefPubMedGoogle Scholar
  112. Xu, Y. (2018). Sensory Cortex Is Nonessential in Working Memory Storage. Trends in Cognitive Sciences, 22(3), 192-193.CrossRefPubMedGoogle Scholar
  113. Zaksas, D., Bisley, J. W., & Pasternak, T. (2001). Motion information is spatially localized in a visual working-memory task. Journal of Neurophysiology, 86(2), 912-921.CrossRefPubMedGoogle Scholar
  114. Zhang, W., & Luck, S. J. (2008). Discrete fixed-resolution representations in visual working memory. Nature, 453(7192), 233.CrossRefPubMedPubMedCentralGoogle Scholar
  115. Zhang, W., & Luck, S. J. (2009). Sudden death and gradual decay in visual working memory. Psychological Science, 20(4), 423-428.CrossRefPubMedPubMedCentralGoogle Scholar
  116. Zokaei, N., Gorgoraptis, N., Bahrami, B., Bays, P. M., & Husain, M. (2011). Precision of working memory for visual motion sequences and transparent motion surfaces. Journal of Vision, 11(14), 2-2.CrossRefPubMedGoogle Scholar

Copyright information

© The Psychonomic Society, Inc. 2019

Authors and Affiliations

  1. 1.Institute of Medical PsychologyGoethe UniversityFrankfurt am MainGermany
  2. 2.Medical Psychology and Medical Sociology, Faculty of MedicineAlbert-Ludwigs-UniversityFreiburgGermany

Personalised recommendations