Advertisement

Symmetry mediates the bootstrapping of 3-D relief slant to metric slant

  • Xiaoye Michael WangEmail author
  • Mats Lind
  • Geoffrey P. Bingham
Article

Abstract

Empirical studies have always shown 3-D slant and shape perception to be inaccurate as a result of relief scaling (an unknown scaling along the depth direction). Wang, Lind, and Bingham (Journal of Experimental Psychology: Human Perception and Performance, 44(10), 1508–1522, 2018) discovered that sufficient relative motion between the observer and 3-D objects in the form of continuous perspective change (≥45°) could enable accurate 3-D slant perception. They attributed this to a bootstrap process (Lind, Lee, Mazanowski, Kountouriotis, & Bingham in Journal of Experimental Psychology: Human Perception and Performance, 40(1), 83, 2014) where the perceiver identifies right angles formed by texture elements and tracks them in the 3-D relief structure through rotation to extrapolate the unknown scaling factor, then used to convert 3-D relief structure to 3-D Euclidean structure. This study examined the nature of the bootstrap process in slant perception. In a series of four experiments, we demonstrated that (1) features of 3-D relief structure, instead of 2-D texture elements, were tracked (Experiment 1); (2) identifying right angles was not necessary, and a different implementation of the bootstrap process is more suitable for 3-D slant perception (Experiment 2); and (3) mirror symmetry is necessary to produce accurate slant estimation using the bootstrapped scaling factor (Experiments 3 and 4). Together, the results support the hypothesis that a symmetry axis is used to determine the direction of slant and that 3-D relief structure is tracked over sufficiently large perspective change to produce metric depth. Altogether, the results supported the bootstrap process.

Keywords

Bootstrap process Geographical slant perception Affine geometry Stereomotion Structure from motion Skew symmetry 

Notes

Open practice statement

Data and materials for all experiments are available upon request to the corresponding author, and none of the experiments were preregistered.

References

  1. Allen, B., Haun, A. M., Hanley, T., Green, C. S., & Rokers, B. (2015). The optimal combination of the binocular cues to 3-D motion. Investigative Ophthalmology & Visual Science, 56(12), 7589–7596.CrossRefGoogle Scholar
  2. Bingham, G. P., & Lind, M. (2008). Large continuous perspective transformations are necessary and sufficient for accurate perception of metric shape. Perception & Psychophysics, 70(3), 524–540.CrossRefGoogle Scholar
  3. Bingham, G. P., & Muchisky, M. M. (1993a). Center of mass perception and inertial frames of reference. Perception & Psychophysics, 54(5), 617–632.Google Scholar
  4. Bingham, G. P., & Muchisky, M. M. (1993b). Center of mass perception: Perturbation of symmetry. Perception & Psychophysics, 54(5), 633–639.Google Scholar
  5. Brainard, D. H. (1997). The Psychophysics Toolbox. Spatial Vision, 10, 433–436.CrossRefGoogle Scholar
  6. Cherry, O. C., & Bingham, G. P. (2018). Searching for invariance: Geographical and optical slant. Vision Research, 149, 30–39.CrossRefPubMedGoogle Scholar
  7. Cousineau, D. (2005). Confidence intervals in within-subject designs: A simpler solution to Loftus and Masson’s method. Tutorials in Quantitative Methods for Psychology, 1(1), 42–45.CrossRefGoogle Scholar
  8. Cumming, B. G., & Parker, A. J. (1994). Binocular mechanisms for detecting motion-in-depth. Vision Research, 34(4), 483–495.CrossRefPubMedGoogle Scholar
  9. Dick, M., & Hochstein, S. (1989). Visual orientation estimation. Perception & Psychophysics, 46(3), 227–234.CrossRefGoogle Scholar
  10. Domini, F., & Caudek, C. (2013). Perception and action without veridical metric reconstruction: An affine approach. In S. Dickinson & Z. Pizlo (Eds.), Shape perception in human and computer vision (pp. 285–298). London, UK: Springer.CrossRefGoogle Scholar
  11. Durgin, F. H., & Li, Z. (2011). The perception of 2-D orientation is categorically biased. Journal of Vision, 11(8), 13–13.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Gibson, J.J. (1950). The perception of visual surfaces. The American Journal of Psychology, 63(3), 367–384.CrossRefPubMedGoogle Scholar
  13. Gibson, J. J., & Cornsweet, J. (1952). The perceived slant of visual surfaces—Optical and geographical. Journal of Experimental Psychology, 44(1), 11–15.CrossRefPubMedGoogle Scholar
  14. Julesz, B. (1971). Foundations of cyclopean perception. Chicago, IL: University of Chicago Press.Google Scholar
  15. Kleiner, M., Brainard, D., & Pelli, D. (2007). What’s new in Psychtoolbox-3?. Perception, 36(14) 1–16.Google Scholar
  16. Koenderink, J. J., & van Doorn, A. J. (1991). Affine structure from motion. Journal of the Ophthalmic Society of America, A, 8(2), 377–385.CrossRefGoogle Scholar
  17. Koenderink, J. J., & van Doorn, A. J. (1995). Relief: Pictorial and otherwise. Image and Vision Computing, 13(5), 321-334.CrossRefGoogle Scholar
  18. Koenderink, J. J., Van Doorn, A. J., & Kappers, A. M. (1992). Surface perception in pictures. Perception & Psychophysics, 52(5), 487–496.CrossRefGoogle Scholar
  19. Koenderink, J. J., van Doorn, A. J., & Kappers, A. M. (1994). On so-called paradoxical monocular stereoscopy. Perception, 23(5), 583–594.CrossRefPubMedGoogle Scholar
  20. Koenderink, J. J., van Doorn, A. J., & Kappers, A. M. (1995). Depth relief. Perception, 24(1), 115–126.CrossRefPubMedGoogle Scholar
  21. Lee, Y., & Bingham, G. P. (2010). Large perspective changes (>45°) yield perception of metric shape that allows accurate feedforward reaches-to-grasp and it persists after the optic flow has stopped! Experimental Brain Research, 204, 559–573.CrossRefPubMedGoogle Scholar
  22. Lee, Y. L., Lind, M., & Bingham, G. P. (2013). Perceived 3-D metric (or euclidean) shape is merely ambiguous, not systematically distorted. Experimental Brain Research, 224, 551–555.CrossRefPubMedGoogle Scholar
  23. Lee, Y. L., Lind, M., Bingham, N., & Bingham, G. P. (2012). Object recognition using metric shape. Vision Research, 69, 23–31.CrossRefPubMedGoogle Scholar
  24. Li, Y., Sawada, T., Shi, Y., Kwon, T., & Pizlo, Z. (2011). A Bayesian model of binocular perception of 3-D mirror symmetrical polyhedra. Journal of Vision, 11(4), 1–20.CrossRefPubMedGoogle Scholar
  25. Lind, M. (1996). Perceiving motion and rigid structure from optic flow: A combined weak-perspective and polar-perspective approach. Perception & Psychophysics, 58(7), 1085–1102.CrossRefGoogle Scholar
  26. Lind, M., Lee, Y. L., Mazanowski, J., Kountouriotis, G. K., & Bingham, G. P. (2014). Affine operations plus symmetry yield perception of metric shape with large perspective changes (≥45°): Data and model. Journal of Experimental Psychology: Human Perception and Performance, 40(1), 83.PubMedGoogle Scholar
  27. Morey, R. D. (2008). Confidence intervals from normalized data: A correction to Cousineau (2005). Tutorials in Quantitative Methods for Psychology, 4(2), 61–64.CrossRefGoogle Scholar
  28. Nefs, H. T., O’Hare, L., & Harris, J. M. (2010). Two independent mechanisms for motion-in-depth perception: Evidence from individual differences. Frontiers in Psychology, 155.  https://doi.org/10.3389/fpsyg.2010.00155
  29. Norman, J. F., Todd, J. T., Norman, H. F., Clayton, A. M., & McBride, T. R. (2006). Visual discrimination of local surface structure: Slant, tilt, and curvedness. Vision research, 46(6–7), 1057–1069.Google Scholar
  30. Norman, J. F., Todd, J. T., Perotti, V. J., & Tittle, J. S. (1996). The visual perception of three-dimensional length. Journal of Experimental Psychology: Human Perception and Performance, 22(1), 173–186.PubMedGoogle Scholar
  31. Norman, J. F., Todd, J. T., & Phillips, F. (1995). The perception of surface orientation from multiple sources of optical information. Perception & Psychophysics, 57(5), 629–636.CrossRefGoogle Scholar
  32. Pelli, D. G. (1997) The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10, 437–442.CrossRefGoogle Scholar
  33. Pizlo, Z. (2010). 3-D shape: Its unique place in visual perception. Cambridge, MA: MIT Press.Google Scholar
  34. Pizlo, Z., Sawada, T., Li, Y., Kropatsch, W. G., & Steinman, R. M. (2010). New approach to the perception of 3-D shape based on veridicality, complexity, symmetry and volume. Vision Research, 50(1), 1–11.CrossRefPubMedGoogle Scholar
  35. Saunders, J. A., & Knill, D. C. (2001). Perception of 3-D surface orientation from skew symmetry. Vision Research, 41(24), 3163–3183.CrossRefPubMedGoogle Scholar
  36. Sawada, T., & Pizlo, Z. (2008). Detection of skewed symmetry. Journal of Vision, 8(5), 14, 1–18.CrossRefPubMedGoogle Scholar
  37. Sedgwick, H. A., & Levy, S. (1985). Environment-centered and viewer-centered perception of surface orientation. Computer Vision, Graphics, and Image Processing, 31, 248–260.CrossRefGoogle Scholar
  38. Shapiro, L. S., Zisserman, A., & Brady, M. (1995). 3-D motion recovery via affine epipolar geometry. International Journal of Computer Vision, 16(2), 147–182.CrossRefGoogle Scholar
  39. Shioiri, S., Saisho, H., & Yaguchi, H. (2000). Motion in depth based on inter-ocular velocity differences. Vision Research, 40, 2565–2572.CrossRefPubMedGoogle Scholar
  40. Stevens, K. A. (1983a). Slant-tilt: The visual encoding of surface orientation. Biological Cybernetics, 46, 183–195.CrossRefPubMedGoogle Scholar
  41. Stevens, K. A. (1983b). Surface tilt (the direction of slant): A neglected psychophysical variable. Perception & Psychophysics, 33(3), 241–250.CrossRefGoogle Scholar
  42. Thompson, D., & Mundy, J. (1987, March). Three-dimensional model matching from an unconstrained viewpoint. Proceedings. 1987 IEEE International Conference on Robotics and Automation (Vol. 4, pp. 208–220). New York, NY: IEEE.Google Scholar
  43. Todd, J. T., & Bressan, P. (1990). The perception of 3-dimensional affine structure from minimal apparent motion sequences. Perception & Psychophysics, 48(5), 419–430.CrossRefGoogle Scholar
  44. Todd, J. T., Christensen, J. C., & Guckes, K. M. (2010). Are discrimination thresholds a valid measure of variance for judgments of slant from texture?. Journal of Vision, 10(2), 1–18.CrossRefPubMedGoogle Scholar
  45. Todd, J. T., Koenderink, J. J., van Doorn, A. J., & Kappers, A. M. (1996). Effects of changing viewing conditions on the perceived structure of smoothly curved surfaces. Journal of Experimental Psychology: Human Perception and Performance, 22(3), 695.PubMedGoogle Scholar
  46. Todd, J. T., & Norman, J. F. (1991). The visual perception of smoothly curved surfaces from minimal apparent motion sequences. Perception & Psychophysics, 50(6), 509–523.CrossRefGoogle Scholar
  47. Todd, J. T., & Norman, J. F. (2003). The visual perception of 3-D shape from multiple cues: Are observers capable of perceiving metric structure?. Perception & Psychophysics, 65(1), 31–47.CrossRefGoogle Scholar
  48. Todd, J. T., Oomes, A. H., Koenderink, J. J., & Kappers, A. M. (2001). On the affine structure of perceptual space. Psychological Science, 12(3), 191–196.CrossRefPubMedGoogle Scholar
  49. Todd, J. T., & Perotti, V. J. (1999). The visual perception of surface orientation from optical information. Perception & Psychophysics, 61(8), 1577–1589.CrossRefGoogle Scholar
  50. Wagner, M. (1985). The metric of visual space. Perception and Psychophysics, 38(6), 483–495.CrossRefPubMedGoogle Scholar
  51. Wang, X. M., Lind, M., & Bingham, G. P. (2018). Large continuous perspective change with noncoplanar points enables accurate slant perception. Journal of Experimental Psychology: Human Perception and Performance, 44(10), 1508–1522.PubMedGoogle Scholar
  52. Wang, X. M., Lind, M., & Bingham, G. P. (2019). Bootstrapping a better slant: A stratified process for recovering 3-D metric slant. Attention, Perception, & Psychophysics.  https://doi.org/10.3758/s13414-019-01860-y.

Copyright information

© The Psychonomic Society, Inc. 2019

Authors and Affiliations

  1. 1.Department of Psychological and Brain SciencesIndiana UniversityBloomingtonUSA
  2. 2.Department of Information TechnologyUppsala UniversityUppsalaSweden

Personalised recommendations