Advertisement

Preserved tactile acuity in older pianists

  • Gordon E. LeggeEmail author
  • Christina Granquist
  • Alex Lubet
  • Rachel Gage
  • Ying-Zi Xiong
Short Report

Abstract

A previous study from our lab demonstrated retention of high tactile acuity throughout the lifespan in blind subjects in contrast to the typical decline found for sighted subjects (Legge, Madison, Vaughn, Cheong & Miller, Percept Psychophys, 70 (8), 1471-1488, 2008). We hypothesize that preserved tactile acuity in old age is due to lifelong experience with focused attention to touch and not to blindness per se. Proficient pianists devote attention to touch – fingerings and dynamics – over years of practice. To test our hypothesis, we measured tactile acuity in groups of ten young (mean age 24.5 years) and 11 old (mean age 64.7 years) normally sighted pianists and compared their results to the blind and sighted subjects in our 2008 study. The pianists, like the subjects in 2008, were tested on two tactile-acuity charts requiring active touch, one composed of embossed Landolt rings and the other composed of dot patterns similar to braille. For both tests, the pianists performed more like the blind subjects than the sighted subjects from our 2008 study. For the ring chart, there was no significant difference in tactile acuity between the young and old pianists and no significant difference between the pianists and the blind subjects. For the dot chart, the pianists showed an age-related decline in tactile acuity, but not as severe as the sighted subjects from 2008. Our results are consistent with the hypothesis that lifelong experience with focused attention to touch acts to preserve tactile acuity into old age for both blind and sighted subjects.

Keywords

Tactile acuity Aging Blind Pianist 

Notes

Acknowledgements

This research was supported by National Institutes of Health Grant EY002934 and a grant from the Helen Keller Foundation.

Open Practices Statement

The data for all experiments are available at the Data Repository of the University of Minnesota ( https://doi.org/10.13020/fj2x-vk94). None of the data or materials for the experiment reported here was preregistered.

Supplementary material

13414_2019_1844_MOESM1_ESM.docx (67 kb)
ESM 1 (DOCX 67 kb)

References

  1. Bruns, P., Camargo, C. J., Campanella, H., Esteve, J., Dinse, H. R., & Roder, B. (2014). Tactile acuity charts: a reliable measure of spatial acuity. PLoS One, 9(2), e87384.CrossRefGoogle Scholar
  2. Cheung, S. H., Fang, F., He, S., & Legge, G. E. (2009) Retinotopically specific reorganization of visual cortex for tactile pattern recognition. Curr Biol, 19(7):596–601.CrossRefGoogle Scholar
  3. Dinse, H. R., Tegenthoff, M., Heinisch, C., & Kalisch, T. (2010). Ageing and Touch. In E. B. Goldstein (Ed.), Encyclopedia of perception (Vol. 1, pp. 21-24). Thousand Oaks, CA: Sage.Google Scholar
  4. Elbert, T., Pantev, C., Wienbruch, C., Rockstroh, B. & Taub, E. (1995). Increased cortical representation of the fingers of the left hand in string players. Science 270, 305–307.CrossRefGoogle Scholar
  5. Ferris, F. L., 3rd, Kassoff, A., Bresnick, G. H., & Bailey, I. (1982). New visual acuity charts for clinical research. Am J Ophthalmol, 94(1), 91-96.CrossRefGoogle Scholar
  6. Gandhi, S. P., Heeger, D. J., & Boynton, G. M. (1999). Spatial attention affects brain activity in human primary visual cortex. Proceedings of the National Academy of Sciences of the USA, 96(6), 3314–3319.CrossRefGoogle Scholar
  7. Giudice, N. A., Bennett, C. R., Klatzky, R. L., & Loomis, J. M. (2017). Spatial updating of haptic arrays across the life span. Experimental Aging Research, 43(3), 274-290. doi: https://doi.org/10.1080/0361073X.2017.1298958 CrossRefGoogle Scholar
  8. Goldreich, D., & Kanics, I. M. (2003). Tactile acuity is enhanced in blindness. J Neurosci, 23(8), 3439-3445.CrossRefGoogle Scholar
  9. Goldreich, D., & Kanics, I. M. (2006). Performance of blind and sighted humans on a tactile grating detection task. Percept Psychophys, 68(8), 1363-1371.CrossRefGoogle Scholar
  10. Guest, S., Mehrabyan, A., Ackerley, R., & McGlone, F. (2014). Tactile experience does not ameliorate age-related reductions in sensory function. Experimental Aging Research, 40, 81-106.CrossRefGoogle Scholar
  11. Kalisch, T., Kattenstroth, J. C., Kowalewski, R., Tegenthoff, M., & Dinse, H. R. (2012). Cognitive and tactile factors affecting human haptic performance in later life. PLoS One, 7(1), e30420.CrossRefGoogle Scholar
  12. Kerr, C. E., Shaw, J. R., Wasserman, R. H., Chen, V. W., Kanojia, A., Bayer, T., & Kelley, J. M. (2008). Tactile acuity in experienced Tai Chi practitioners: evidence for use dependent plasticity as an effect of sensory-attentional training. Exp Brain Res, 188(2), 317-322.CrossRefGoogle Scholar
  13. Legge, G. E., Madison, C., Vaughn, B. N., Cheong, A. M., & Miller, J. C. (2008). Retention of high tactile acuity throughout the life span in blindness. Percept Psychophys, 70(8), 1471-1488.CrossRefGoogle Scholar
  14. Martinez, A., Anllo-Vento, L., Sereno, M. I., Frank, L. R., Buxton, R. B., & Dubowitz, D. J., et al. (1999). Involvement of striate and extrastriate visual cortical areas in spatial attention. Nature Neuroscience, 2, 364–369.Google Scholar
  15. Merabet, L. B., et al. (2008). Rapid and reversible recruitment of early visual cortex for touch. PLoS One 3(8): e3046.CrossRefGoogle Scholar
  16. Peters, R. M., Hackeman, E., & Goldreich, D. (2009). Diminutive digits discern delicate details: fingertip size and the sex difference in tactile spatial acuity. J Neurosci 29:15756–15761.CrossRefGoogle Scholar
  17. Pinheiro, J., & Bates, D. (2000). Mixed-Effects Models in S and S-PLUS: Springer.Google Scholar
  18. Puckett, A. M., Bollmann, S., Barth, M., & Cunnington, R. (2017). Measuring the effects of attention to individual fingertips in somatosensory cortex using ultra-high field (7T) fMRI. Neuroimage, 161, 179-187. doi: https://doi.org/10.1016/j.neuroimage.2017.08.014 CrossRefGoogle Scholar
  19. Ragert, P., Schmidt, A., Altenmuller, E., & Dinse, H. R. (2004). Superior tactile performance and learning in professional pianists: evidence for meta-plasticity in musicians. Eur J Neurosci, 19(2), 473-478.CrossRefGoogle Scholar
  20. Reuter, E.-M., Voelcker-Rehage, C., Vieluf, S., & Godde, B. (2012). Touch perception throughout working life: effects of age and expertise. Experimental Brain Research, 216(2), 287-297.CrossRefGoogle Scholar
  21. Reuter, E.-M., Voelcker-Rehage, C., Vieluf, S., Winneke, A. H., & Godde, B. (2014). Extensive occupational finger use delays age effects in tactile perception—an ERP study. Attention, Perception, & Psychophysics, 76(4), 1160-1175.CrossRefGoogle Scholar
  22. Sadato, N., Pascual-Leone, A., Grafman, J., Ibanez, V., Deiber, M.P., Dold, G., & Hallett, M. (1996). Activation of the primary visual cortex by Braille reading in blind subjects. Nature 380, 526–528.CrossRefGoogle Scholar
  23. Sterr, A., Muller, M. M., Elbert, T., Rockstroh, B., Pantev, C., & Taub, E. (1998). Perceptual correlates of changes in cortical representation of fingers in blind multifinger Braille readers. J Neurosci, 18(11), 4417-4423.CrossRefGoogle Scholar
  24. Stevens, J. C., & Choo, K. K. (1996). Spatial acuity of the body surface over the life span. Somatosensory & motor research, 13(2), 153-166. doi: https://doi.org/10.3109/08990229609051403 CrossRefGoogle Scholar
  25. Stevens, J. C., Foulke, E., & Patterson, M. Q. (1996). Tactile acuity, aging, and braille reading in long-term blindness. Journal of Experimental Psychology: Applied, 2(2), 91-106. doi: https://doi.org/10.1037/1076-898X.2.2.91 CrossRefGoogle Scholar
  26. Tremblay, F., Mireault, A. C., Letourneau, J., Pierrat, A., & Bourrassa, S. (2002) Tactile perception and manual dexterity in computer users. Somatosens Mot Res, 19:101- 108.CrossRefGoogle Scholar
  27. Van Boven, R. W., Hamilton, R. H., Kauffman, T., Keenan, J. P., & Pascual–Leone, A. (2000). Tactile spatial resolution in blind Braille readers. Neurology, 54(12), 2230-2236. doi: https://doi.org/10.1212/wnl.54.12.2230
  28. Wong, M., Gnanakumaran, V., & Goldreich, D. (2011a). Tactile spatial acuity enhancement in blindness: evidence for experience-dependent mechanisms. J Neurosci, 31(19), 7028-7037.CrossRefGoogle Scholar
  29. Wong, M., Hackeman, E., Hurd, C., & Goldreich, D. (2011b) Short-term visual deprivation does not enhance passive tactile spatial acuity. PLoS One, 6:e25277.CrossRefGoogle Scholar

Copyright information

© The Psychonomic Society, Inc. 2019

Authors and Affiliations

  • Gordon E. Legge
    • 1
    Email author
  • Christina Granquist
    • 1
  • Alex Lubet
    • 2
  • Rachel Gage
    • 1
  • Ying-Zi Xiong
    • 1
  1. 1.Department of PsychologyUniversity of MinnesotaMinneapolisUSA
  2. 2.School of MusicUniversity of MinnesotaMinneapolisUSA

Personalised recommendations