Biological motion and animacy belief induce similar effects on involuntary shifts of attention

  • Ned Chandler-Mather
  • Timothy Welsh
  • Samuel Sparks
  • Ada KritikosEmail author


Biological motion is salient to the human visual and motor systems and may be intrinsic to the perception of animacy. Evidence for the salience of visual stimuli moving with trajectories consistent with biological motion comes from studies showing that such stimuli can trigger shifts of attention in the direction of that motion. The present study was conducted to determine whether or not top-down beliefs about animacy can modify the salience of a nonbiologically moving stimulus to the visuomotor system. A nonpredictive cuing task was used in which a white dot moved from a central location toward a left- or right-sided target placeholder. The target randomly appeared at either location 200, 600, or 1,300 ms after the motion onset. Five groups of participants experienced different stimulus conditions: (1) biological motion, (2) inverted biological motion, (3) nonbiological motion, (4) animacy belief (paired with nonbiological motion), and (5) computer-generated belief (paired with nonbiological motion). Analysis of response times revealed that the motion in the biological motion and animacy belief groups, but not in the inverted and nonbiological motion groups, affected processing of the target information. These findings indicate that biological motion is salient to the visual system and that top-down beliefs regarding the animacy of the stimulus can tune the visual and motor systems to increase the salience of nonbiological motion.


Biological motion Animacy Attention Social IOR Action observation 



This project was partially funded by Australian Research Council Discovery Project 130100253 to A.K., and by an NSERC Discovery Grant to T.N.W. We thank Sebastian Rahe for collecting the data in the final condition. The data will be deposited as supplementary documents on ResearchGate.


  1. Alaerts, K., Nackaerts, E., Meyns, P., Swinnen, S. P., & Wenderoth, N. (2011). Action and emotion recognition from point light displays: An investigation of gender difference. PLoS ONE, 6, e20989. CrossRefGoogle Scholar
  2. Atkinson, A. P., Dittrich, W. H., Gemmell, A. J., & Young, A. W. (2004). Emotion perception from dynamic and static body expressions in point-light and full-light displays. Perception, 33, 717–746. CrossRefGoogle Scholar
  3. Atkinson, M. A., Simpson, A. A., & Cole, G. G. (2018). Visual attention and action: How cueing, direct mapping, and social interactions drive orienting. Psychological Bulletin & Review, 25, 1585–1605. CrossRefGoogle Scholar
  4. Atkinson, M. A., Simpson, A., Skarratt, P. A., & Cole, G. G. (2014). Is social inhibition of return due to action co-representation? Acta Psychologica, 150, 85–93. CrossRefGoogle Scholar
  5. Bardi, L., Di Giorgio, E., Lunghi, M., Troje, N., & Simion, F. (2015). Walking direction triggers visuo-spatial orienting in 6-month-old infants and adults: An eye tracking study. Cognition, 141, 112–120. CrossRefGoogle Scholar
  6. Bayliss, A. P., di Pellegrino, G., & Tipper, S. P. (2005). Sex differences in eye gaze and symbolic cueing of attention. Quarterly Journal of Experimental Psychology, 58, 631–650. CrossRefGoogle Scholar
  7. Bayliss, A. P., Murphy, E., Naughtin, C. K., Kritikos, A., Schilbach, L., & Becker, S. I. (2013). “Gaze leading”: Initiating simulated joint attention influences eye movements and choice behaviour. Journal of Experimental Psychology: General, 142, 76–92. CrossRefGoogle Scholar
  8. Bidet-Ildeil, C., Orliaguet, J.-P., Sokolov, A. N., & Pavlova, M. (2006). Perception of elliptic biological motion. Perception, 35, 1137–114. CrossRefGoogle Scholar
  9. Blakemore, S.-J., & Decety, J. (2001). From the perception of action to the understanding of intention. Nature Reviews Neuroscience, 2, 561–567. CrossRefGoogle Scholar
  10. Bosbach, S., Prinz, W., & Kerzel, D. (2004). A Simon effect with stationary moving stimuli. Journal of Experimental Psychology: Human Perception and Performance, 30, 39–55. Google Scholar
  11. Bruner, J. S., Postman, L., & Rodrigues, J. (1951). Expectation and the perception of color. American Journal of Psychology, 64, 216–227. CrossRefGoogle Scholar
  12. Chang, D. H. F., & Troje, N. F. (2008). Perception of animacy and direction from local biological motion signals. Journal of Vision, 8(5), 3:1–10. CrossRefGoogle Scholar
  13. Clarke, T. J., Bradshaw, M. F., Field, D. T., Hampson, S. E., & Rose, D. (2005). The perception of emotion from body movement in point-light displays of interpersonal dialogue. Perception, 34, 1171–1180. CrossRefGoogle Scholar
  14. Cutting, J. E., & Kozlowski, L. T. (1977). Recognizing friends by their walk: Gait perception without familiarity cue. Bulletin of the Psychonomic Society, 9, 353–356. CrossRefGoogle Scholar
  15. Doneva, S. P., Atkinson, M. A., Skarratt, P. A., & Cole, G. G. (2017). Action or attention in social inhibition of return? Psychological Research, 81, 1–12. CrossRefGoogle Scholar
  16. Flanagan, J. R., & Johansson, R. S. (2003). Action plans used in action observation. Nature, 424, 769–771. CrossRefGoogle Scholar
  17. Frischen, A., & Tipper, S. P. (2004). Orienting attention via observed gaze shift evokes longer term inhibitory effects: Implications for social interactions, attention, and memory. Journal of Experimental Psychology: General, 133, 516–533. CrossRefGoogle Scholar
  18. Gowen, E., Bolton, E., & Poliakoff, E. (2016). Believe it or not: Moving non-biological stimuli believed to have human origin can be represented as human movement. Cognition, 146, 431–438. CrossRefGoogle Scholar
  19. Hommel, B., Chapman, C. S., Cisek, P., Neyedli, H. F., Song, J.-H., & Welsh T. N. (in press). No one knows what attention is. Attention, Perception, & Psychophysics. Google Scholar
  20. Johansson, G. (1973). Visual perception of biological motion and a model for its analysis. Perception & Psychophysics, 14, 195–204. CrossRefGoogle Scholar
  21. Kilner, J., de Hamilton, A. F. C., & Blakemore, S.-J. (2007). Interference effect of observed human movement on action is due to velocity profile of biological motion. Social Neuroscience, 2, 158–166. CrossRefGoogle Scholar
  22. Klein, R. M. (2000). Inhibition of return. Trends in Cognitive Sciences, 4, 138–147. CrossRefGoogle Scholar
  23. Kritikos, A., McTaggart, L., Painter, D. R., & Bayliss, A. P (2011). Something in the way she moves me: Morphology and motion of observed goal-directed and pantomimed actions. Attention, Perception, & Psychophysics, 74, 36–42. CrossRefGoogle Scholar
  24. Longo, M. R., & Bertenthal, B. I. (2009). Attention modulates the specificity of automatic imitation to human actors. Experimental Brain Research, 192, 739–744. CrossRefGoogle Scholar
  25. Lupiáñez, J., Milliken, B., Solano, C., Weaver, B., & Tipper, S. P. (2001). On the strategic modulation of the time course of facilitation and inhibition of return. Quarterly Journal of Experimental Psychology, 54A, 753–773. CrossRefGoogle Scholar
  26. Meegan, D. V., & Tipper, S. P. (1998). Reaching into cluttered visual environments: Spatial and temporal influences of distracting objects. Quarterly Journal of Experimental Psychology, 51A, 225–249.CrossRefGoogle Scholar
  27. Neyedli, H. F., & Welsh, T. N. (2012). The process of facilitation and inhibition in a cue–target paradigm: Insight from movement trajectory deviations. Acta Psychologica, 139, 159–165. CrossRefGoogle Scholar
  28. Otten, M., Seth, A. K., & Pinto, Y. (2017). A social Bayesian brain: How social knowledge can shape visual perception. Brain and Cognition, 112, 69–77. CrossRefGoogle Scholar
  29. Posner, M. I., & Cohen, Y. (1984). Components of visual orienting. In H. Bouma & G. G. Bouwhuis (Eds.), Attention and performance X: Control of language processes (pp. 531–554). Hillsdale, NJ: Erlbaum.Google Scholar
  30. Press, C. (2011). Action observation and robotic agents: Learning and anthropomorphism. Neuroscience & Biobehavioral Reviews, 35, 1410–1418. CrossRefGoogle Scholar
  31. Shi, J., Weng, X., He, S., & Jiang, Y. (2010). Biological motion cues trigger reflexive attentional orienting. Cognition, 117, 348–354. CrossRefGoogle Scholar
  32. Song, J.-H., & Nakayama, K. (2009). Hidden cognitive states revealed in choice reaching tasks. Trends in Cognitive Sciences, 13, 360–366. CrossRefGoogle Scholar
  33. Sparks, S., Douglas, T., & Kritikos, A. (2016). Verbal social primes alter motor contagion during action observation. Quarterly Journal of Experimental Psychology, 69, 1041–1048.
  34. Sparks, S., Sidari, M., Lyons, M., & Kritikos, A. (2016). Pictures of you: Dot stimuli cause motor contagion in presence of a still human form. Consciousness and Cognition, 45, 135–145.
  35. Stanley, J., Gowen, E., & Miall, R. C. (2007). Effects of agency on movement interference during observation of a moving dot stimulus. Journal of Experimental Psychology: Human Perception and Performance, 33, 915–926. Google Scholar
  36. Thurman, S. M., & Lu, H. (2013). Complex interactions between spatial, orientation, and motion cues for biological motion perception across visual space. Journal of Vision, 13(2), 8. CrossRefGoogle Scholar
  37. Tipper, S. P., Lortie, C., & Baylis, G. C. (1992). Selective reaching: Evidence for action-centred attention. Journal of Experimental Psychology: Human Perception and Performance, 18, 891–905. Google Scholar
  38. Tipper, S. P., Weaver, B., Jerreat, L. M., & Burak, A. L. (1994). Object-based and environment-based inhibition of return of visual attention. Journal of Experimental Psychology: Human Perception and Performance, 20, 478–499. Google Scholar
  39. Troje, N. F. (2002) Decomposing biological motion: A framework for analysis and synthesis of human gait patterns. Journal of Vision, 2(5), 2:371–387. CrossRefGoogle Scholar
  40. Troje, N. F., & Westhoff, C. (2006). The inversion effect in biological motion perception: Evidence for a “life detector”? Current Biology, 16, 821–824. CrossRefGoogle Scholar
  41. Ulloa, J. L., Marchetti, C., Taffou, M., & George, N. (2015). Only your yes tell me what you like: Exploring the liking effect induced by other’s gaze. Cognition and Emotion, 29, 460–470. CrossRefGoogle Scholar
  42. Viviani, P., & Flash, T. (1995). Minimum-jerk, two-thirds power law, and isochrony: Converging approaches to movement planning. Journal of Experimental Psychology: Human Perception and Performance, 21, 32–53. Google Scholar
  43. Wang, L., Yang, X., Shi, J., & Jiang, Y. (2014). The feet have it: Local biological motion cues trigger reflexive attentional orienting in the brain. NeuroImage, 84, 217–224. CrossRefGoogle Scholar
  44. Welsh, T. N., Chandler-Mather, N., Sparks, S., & Kritikos, A. (2019). Title of paper. Manuscript in preparation.Google Scholar
  45. Welsh, T. N., & Elliott, D. (2004). Movement trajectories in the presence of a distracting stimulus: Evidence for a response activation model of selective reaching. Quarterly Journal of Experimental Psychology, 57, 1031–1057. CrossRefGoogle Scholar
  46. Welsh, T. N., Elliott, D., Anson, J. G., Dhillon, V., Weeks, D. J., Lyons, J. L., & Chua, R. (2005). Does Joe influence Fred’s action? Inhibition of return across different nervous systems. Neuroscience Letters, 385, 99–104. CrossRefGoogle Scholar
  47. Welsh, T. N., Elliott, D., & Weeks, D. J. (1999). Hand deviations toward distractors: Evidence for response competition. Experimental Brain Research, 127, 207–212. CrossRefGoogle Scholar
  48. Welsh, T. N., Higgins, L., Ray, M., & Weeks, D. J. (2007). Seeing versus believing: Is believing sufficient to activate the processes of response co-representation? Human Movement Science, 26, 853–866.
  49. Welsh, T. N., Lyons, J., Weeks, D. J., Anson, J. G., Chua, R., Mendoza, J., & Elliott, D. (2007). Within-and between-nervous-system inhibition of return: Observation is as good as performance. Psychonomic Bulletin & Review, 14, 950–956.
  50. Welsh, T. N., McDougall, L. M., & Weeks, D. J. (2009). The performance and observation of action shape future behaviour. Brain and Cognition, 71, 64–71. CrossRefGoogle Scholar
  51. Welsh, T. N., & Weeks, D. J. (2010). Visual selective attention and action. In D. Elliott & M. A. Khan (Eds.), Vision and goal-directed movement: Neurobehavioral perspectives (pp. 39–58). Champaign, IL: Human Kinetics.Google Scholar

Copyright information

© The Psychonomic Society, Inc. 2019

Authors and Affiliations

  • Ned Chandler-Mather
    • 1
  • Timothy Welsh
    • 2
  • Samuel Sparks
    • 1
  • Ada Kritikos
    • 1
    • 2
    Email author
  1. 1.School of PsychologyUniversity of QueenslandSt LuciaAustralia
  2. 2.Centre for Motor Control, Faculty of Kinesiology & Physical EducationUniversity of TorontoTorontoCanada

Personalised recommendations