Advertisement

Mechanisms of contextual cueing: A tutorial review

  • Caitlin A. SiskEmail author
  • Roger W. Remington
  • Yuhong V. Jiang
TUTORIAL REVIEW

Abstract

Repeated contexts yield faster response time in visual search, compared with novel contexts. This effect is known as contextual cueing. Despite extensive study over the past two decades, there remains a spirited debate over whether repeated displays expedite search before the target is found (early locus) or facilitate response after the target is found (late locus). Here, we provide a tutorial review of contextual cueing, with a focus on assessing the locus of the effect. We evaluate the evidence from psychophysics, EEG, and eye tracking. Existing studies support an early locus of contextual cueing, consistent with attentional guidance accounts. Evidence for a late locus exists, though it is less conclusive. Existing literature also highlights a distinction between habit-guided attention learned through experience and changes in spatial priority driven by task goals and stimulus salience.

Keywords

Attention Interactions with memory Visual search,·Attention: selective 

Notes

Acknowledgements

We thank Melina Kunar, Hermann Müller, and Thomas Geyer for comments. CS was supported in part by the National Science Foundation’s Research Traineeship Program.

Open Practices Statement

This paper has no associated data.

References

  1. Addleman, D. A., Schmidt, A. L., Remington, R. W., & Jiang, Y. V. (2019). Implicit location probability learning does not induce baseline shifts of visuospatial attention. Psychonomic Bulletin & Review. doi: https://doi.org/10.3758/s13423-019-01588-8
  2. Addleman, D. A., Tao, J., Remington, R. W., & Jiang, Y. V. (2018). Explicit goal-driven attention, unlike implicitly learned attention, spreads to secondary tasks. Journal of Experimental Psychology. Human Perception and Performance, 44(3), 356–366. doi: https://doi.org/10.1037/xhp0000457 CrossRefPubMedGoogle Scholar
  3. Anderson, B. A. (2016). The attention habit: How reward learning shapes attentional selection. Annals of the New York Academy of Sciences, 1369(1), 24–39. doi: https://doi.org/10.1111/nyas.12957 CrossRefPubMedGoogle Scholar
  4. Annac, E., Manginelli, A. A., Pollmann, S., Shi, Z., Müller, H. J., & Geyer, T. (2013). Memory under pressure: Secondary-task effects on contextual cueing of visual search. Journal of Vision, 13(13), 6–6. doi: https://doi.org/10.1167/13.13.6 CrossRefPubMedGoogle Scholar
  5. Annac, E., Pointner, M., Khader, P. H., Müller, H. J., Zang, X., & Geyer, T. (2019). Recognition of incidentally learned visual search arrays is supported by fixational eye movements. Journal of Experimental Psychology: Learning, Memory, and Cognition. doi: https://doi.org/10.1037/xlm0000702
  6. Annac, E., Zang, X., Müller, H. J., & Geyer, T. (2018). A secondary task is not always costly: Context-based guidance of visual search survives interference from a demanding working memory task. British Journal of Psychology (London, England: 1953). doi: https://doi.org/10.1111/bjop.12346
  7. Aslin, R. N. (2017). Statistical learning: A powerful mechanism that operates by mere exposure. Wiley Interdisciplinary Reviews: Cognitive Science, 8(1–2), e1373. doi: https://doi.org/10.1002/wcs.1373 CrossRefGoogle Scholar
  8. Assumpção, L., Shi, Z., Zang, X., Müller, H. J., & Geyer, T. (2018). Contextual cueing of tactile search is coded in an anatomical reference frame. Journal of Experimental Psychology: Human Perception and Performance, 44(4), 566–577. doi: https://doi.org/10.1037/xhp0000478 CrossRefPubMedGoogle Scholar
  9. Awh, E., Belopolsky, A. V., & Theeuwes, J. (2012). Top-down versus bottom-up attentional control: A failed theoretical dichotomy. Trends in Cognitive Sciences, 16(8), 437–443. doi: https://doi.org/10.1016/j.tics.2012.06.010 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Beesley, T., Vadillo, M. A., Pearson, D., & Shanks, D. R. (2015). Pre-exposure of repeated search configurations facilitates subsequent contextual cuing of visual search. Journal of Experimental Psychology: Learning, Memory, and Cognition, 41(2), 348–362. doi: https://doi.org/10.1037/xlm0000033 CrossRefPubMedGoogle Scholar
  11. Biederman, I. (1972). Perceiving real-world scenes. Science (New York, N.Y.), 177(4043), 77–80.CrossRefGoogle Scholar
  12. Biederman, I., Mezzanotte, R. J., & Rabinowitz, J. C. (1982). Scene perception: Detecting and judging objects undergoing relational violations. Cognitive Psychology, 14(2), 143–177.CrossRefPubMedGoogle Scholar
  13. Brady, T. F., & Chun, M. M. (2007). Spatial constraints on learning in visual search: Modeling contextual cuing. Journal of Experimental Psychology: Human Perception and Performance, 33(4), 798–815. doi: https://doi.org/10.1037/0096-1523.33.4.798 CrossRefPubMedGoogle Scholar
  14. Brewer, W. F., & Treyens, J. C. (1981). Role of schemata in memory for places. Cognitive Psychology, 13(2), 207–230. doi: https://doi.org/10.1016/0010-0285(81)90008-6 CrossRefGoogle Scholar
  15. Brockmole, J. R., Castelhano, M. S., & Henderson, J. M. (2006). Contextual cueing in naturalistic scenes: Global and local contexts. Journal of Experimental Psychology: Learning, Memory, and Cognition, 32(4), 699–706. doi: https://doi.org/10.1037/0278-7393.32.4.699 CrossRefPubMedGoogle Scholar
  16. Brockmole, J. R., & Henderson, J. M. (2006). Short article: Recognition and attention guidance during contextual cueing in real-world scenes: Evidence from eye movements. Quarterly Journal of Experimental Psychology, 59(7), 1177–1187. doi: https://doi.org/10.1080/17470210600665996 CrossRefGoogle Scholar
  17. Brooks, D. I., Rasmussen, I. P., & Hollingworth, A. (2010). The nesting of search contexts within natural scenes: Evidence from contextual cuing. Journal of Experimental Psychology: Human Perception and Performance, 36(6), 1406–1418. doi: https://doi.org/10.1037/a0019257 CrossRefPubMedGoogle Scholar
  18. Castelhano, M. S., Fernandes, S., & Theriault, J. (2018). Examining the hierarchical nature of scene representations in memory. Journal of Experimental Psychology: Learning, Memory, and Cognition. doi: https://doi.org/10.1037/xlm0000660
  19. Chaumon, M., Drouet, V., & Tallon-Baudry, C. (2008). Unconscious associative memory affects visual processing before 100 ms. Journal of Vision, 8(3), 10.1-10. doi: https://doi.org/10.1167/8.3.10 CrossRefGoogle Scholar
  20. Chelazzi, L., Bisley, J. W., & Bartolomeo, P. (2018). The unconscious guidance of attention. Cortex, 102, 1–5. doi: https://doi.org/10.1016/j.cortex.2018.02.002 CrossRefPubMedGoogle Scholar
  21. Chua, K.-P., & Chun, M. M. (2003). Implicit scene learning is viewpoint dependent. Perception & Psychophysics, 65(1), 72–80. doi: https://doi.org/10.3758/BF03194784 CrossRefGoogle Scholar
  22. Chun, M. M., & Jiang, Y. (1998). Contextual cueing: Implicit learning and memory of visual context guides spatial attention. Cognitive Psychology, 36(1), 28–71. doi: https://doi.org/10.1006/cogp.1998.0681 CrossRefPubMedGoogle Scholar
  23. Chun, M. M., & Phelps, E. A. (1999). Memory deficits for implicit contextual information in amnesic subjects with hippocampal damage. Nature Neuroscience, 2(9), 844–847. doi: https://doi.org/10.1038/12222 CrossRefPubMedGoogle Scholar
  24. Chun, M. M. (2000). Contextual cueing of visual attention. Trends in Cognitive Sciences, 4(5), 170–178.CrossRefPubMedGoogle Scholar
  25. Chun, M. M., Golomb, J. D., & Turk-Browne, N. B. (2011). A Taxonomy of external and internal attention. Annual Review of Psychology, 62(1), 73–101. doi: https://doi.org/10.1146/annurev.psych.093008.100427 CrossRefPubMedGoogle Scholar
  26. Chun, M. M., & Jiang, Y. (1999). Top-down attentional guidance based on implicit learning of visual covariation. Psychological Science, 10(4), 360–365. doi: https://doi.org/10.1111/1467-9280.00168 CrossRefGoogle Scholar
  27. Chun, M. M., & Jiang, Y. (2003). Implicit, long-term spatial contextual memory. Journal of Experimental Psychology. Learning, Memory, and Cognition, 29(2), 224–234.CrossRefPubMedGoogle Scholar
  28. Colagiuri, B., & Livesey, E. J. (2016). Contextual cuing as a form of nonconscious learning: Theoretical and empirical analysis in large and very large samples. Psychonomic Bulletin & Review, 23(6), 1996–2009. doi: https://doi.org/10.3758/s13423-016-1063-0 CrossRefGoogle Scholar
  29. Conci, M., Müller, H. J., & von Mühlenen, A. (2013). Object-based implicit learning in visual search: Perceptual segmentation constrains contextual cueing. Journal of Vision, 13(3), 15–15. doi: https://doi.org/10.1167/13.3.15 CrossRefPubMedGoogle Scholar
  30. Conci, M., Sun, L., & Müller, H. J. (2011). Contextual remapping in visual search after predictable target-location changes. Psychological Research, 75(4), 279–289. doi: https://doi.org/10.1007/s00426-010-0306-3 CrossRefPubMedGoogle Scholar
  31. Conci, M., & von Mühlenen, A. (2009). Region segmentation and contextual cuing. Attention, Perception, & Psychophysics, 71(7), 1514–1524. doi: https://doi.org/10.3758/APP.71.7.1514 CrossRefGoogle Scholar
  32. Davenport, J. L., & Potter, M. C. (2004). Scene consistency in object and background perception. Psychological Science, 15(8), 559–564. doi: https://doi.org/10.1111/j.0956-7976.2004.00719.x CrossRefPubMedGoogle Scholar
  33. Egeth, H. E., & Yantis, S. (1997). Visual attention: Control, representation, and time course. Annual Review of Psychology, 48(1), 269–297. doi: https://doi.org/10.1146/annurev.psych.48.1.269 CrossRefPubMedGoogle Scholar
  34. Endo, N., & Takeda, Y. (2004). Selective learning of spatial configuration and object identity in visual search. Perception & Psychophysics, 66(2), 293–302. doi: https://doi.org/10.3758/BF03194880 CrossRefGoogle Scholar
  35. Feldmann-Wüstefeld, T., & Schubö, A. (2014). Stimulus homogeneity enhances implicit learning: Evidence from contextual cueing. Vision Research, 97, 108–116. doi: https://doi.org/10.1016/j.visres.2014.02.008 CrossRefPubMedGoogle Scholar
  36. Folk, C. L., Remington, R. W., & Johnston, J. C. (1992). Involuntary covert orienting is contingent on attentional control settings. Journal of Experimental Psychology. Human Perception and Performance, 18(4), 1030–1044.CrossRefPubMedGoogle Scholar
  37. Geng, J. J., & Behrmann, M. (2002). Probability cuing of target location facilitates visual search implicitly in normal participants and patients with hemispatial neglect. Psychological Science, 13(6), 520–525. doi: https://doi.org/10.1111/1467-9280.00491 CrossRefPubMedGoogle Scholar
  38. Geringswald, F., Baumgartner, F., & Pollmann, S. (2012). Simulated loss of foveal vision eliminates visual search advantage in repeated displays. Frontiers in Human Neuroscience, 6. doi: https://doi.org/10.3389/fnhum.2012.00134
  39. Geyer, T., Zehetleitner, M., & Müller, H. J. (2010b). Contextual cueing of pop-out visual search: When context guides the deployment of attention. Journal of Vision, 10(5), 20–20. doi: https://doi.org/10.1167/10.5.20 CrossRefPubMedGoogle Scholar
  40. Geyer, T., Shi, Z., & Müller, H. J. (2010a). Contextual cueing in multiconjunction visual search is dependent on color- and configuration-based intertrial contingencies. Journal of Experimental Psychology: Human Perception and Performance, 36(3), 515–532. doi: https://doi.org/10.1037/a0017448 CrossRefPubMedGoogle Scholar
  41. Goujon, A., Brockmole, J. R., & Ehinger, K. A. (2012). How visual and semantic information influence learning in familiar contexts. Journal of Experimental Psychology. Human Perception and Performance, 38(5), 1315–1327. doi: https://doi.org/10.1037/a0028126 CrossRefPubMedGoogle Scholar
  42. Goujon, A., Didierjean, A., & Marmèche, E. (2009). Semantic contextual cuing and visual attention. Journal of Experimental Psychology. Human Perception and Performance, 35(1), 50–71. doi: https://doi.org/10.1037/0096-1523.35.1.50 CrossRefPubMedGoogle Scholar
  43. Goujon, A., Didierjean, A., & Thorpe, S. (2015). Investigating implicit statistical learning mechanisms through contextual cueing. Trends in Cognitive Sciences, 19(9), 524–533. doi: https://doi.org/10.1016/j.tics.2015.07.009 CrossRefPubMedGoogle Scholar
  44. Harris, A. M., & Remington, R. W. (2017). Contextual cueing improves attentional guidance, even when guidance is supposedly optimal. Journal of Experimental Psychology: Human Perception and Performance, 43(5), 926–940. doi: https://doi.org/10.1037/xhp0000394 CrossRefPubMedGoogle Scholar
  45. Hodsoll, J. P., & Humphreys, G. W. (2005). Preview search and contextual cuing. Journal of Experimental Psychology: Human Perception and Performance, 31(6), 1346–1358. doi: https://doi.org/10.1037/0096-1523.31.6.1346 CrossRefPubMedGoogle Scholar
  46. Hollingworth, A., & Henderson, J. M. (1998). Does consistent scene context facilitate object perception? Journal of Experimental Psychology. General, 127(4), 398–415.Google Scholar
  47. Hout, M. C., & Goldinger, S. D. (2012). Incidental learning speeds visual search by lowering response thresholds, not by improving efficiency: Evidence from eye movements. Journal of Experimental Psychology Human Perception and Performance, 38(1), 90–112. doi: https://doi.org/10.1037/a0023894 CrossRefPubMedGoogle Scholar
  48. Jiang, Y., & Chun, M. M. (2001). Selective attention modulates implicit learning. The Quarterly Journal of Experimental Psychology A, 54(4), 1105–1124. doi: https://doi.org/10.1080/02724980042000516 CrossRefGoogle Scholar
  49. Jiang, Y., & Leung, A. W. (2005). Implicit learning of ignored visual context. Psychonomic Bulletin & Review, 12(1), 100–106. doi: https://doi.org/10.3758/BF03196353 CrossRefGoogle Scholar
  50. Jiang, Y., & Song, J.-H. (2005). Spatial context learning in visual search and change detection. Perception & Psychophysics, 67(7), 1128–1139. doi: https://doi.org/10.3758/BF03193546 CrossRefGoogle Scholar
  51. Jiang, Y., Song, J.-H., & Rigas, A. (2005). High-capacity spatial contextual memory. Psychonomic Bulletin and Review, 12(3), 524-529. doi: https://doi.org/10.3758/BF03193799 CrossRefPubMedGoogle Scholar
  52. Jiang, Y. V. (2018). Habitual versus goal-driven attention. Cortex, 102, 107–120. doi: https://doi.org/10.1016/j.cortex.2017.06.018 CrossRefPubMedGoogle Scholar
  53. Jiang, Y. V., Koutstaal, W., & Twedell, E. L. (2016). Habitual attention in older and young adults. Psychology and Aging, 31(8), 970–980. doi: https://doi.org/10.1037/pag0000139 CrossRefPubMedGoogle Scholar
  54. Jiang, Y. V., Sha, L. Z., & Sisk, C. A. (2018). Experience-guided attention: Uniform and implicit. Attention, Perception, & Psychophysics, 80(7), 1647–1653. doi: https://doi.org/10.3758/s13414-018-1585-9 CrossRefGoogle Scholar
  55. Jiang, Y. V., Sigstad, H. M., & Swallow, K. M. (2013a). The time course of attentional deployment in contextual cueing. Psychonomic Bulletin & Review, 20(2), 282–288. doi: https://doi.org/10.3758/s13423-012-0338-3 CrossRefGoogle Scholar
  56. Jiang, Y. V., & Sisk, C. A. (2018). Habit-like attention. Current Opinion in Psychology, 29, 65–70. doi: https://doi.org/10.1016/j.copsyc.2018.11.014 CrossRefPubMedGoogle Scholar
  57. Jiang, Y. V., & Sisk, C. A. (2019). Contextual cueing. In Springer Neuromethods: Spatial learning and attention guidance. Springer.Google Scholar
  58. Jiang, Y. V., Sisk, C. A., & Toh, Y. N. (in press). Implicit guidance of attention in contextual cueing: Neuropsychological and developmental evidence. Neuroscience and Behavioral Reviews. Google Scholar
  59. Jiang, Y. V., & Swallow, K. M. (2013). Spatial reference frame of incidentally learned attention. Cognition, 126(3), 378–390. doi: https://doi.org/10.1016/j.cognition.2012.10.011 CrossRefPubMedGoogle Scholar
  60. Jiang, Y. V., & Swallow, K. M. (2014). Changing viewer perspectives reveals constraints to implicit visual statistical learning. Journal of Vision, 14(12). doi: https://doi.org/10.1167/14.12.3
  61. Jiang, Y. V., Swallow, K. M., Rosenbaum, G. M., & Herzig, C. (2013b). Rapid acquisition but slow extinction of an attentional bias in space. Journal of Experimental Psychology Human Perception and Performance, 39(1), 87–99. doi: https://doi.org/10.1037/a0027611 CrossRefPubMedGoogle Scholar
  62. Jiang, Y. V., Swallow, K. M., & Sun, L. (2014). Egocentric coding of space for incidentally learned attention: Effects of scene context and task instructions. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40(1), 233. doi: https://doi.org/10.1037/a0033870 CrossRefPubMedGoogle Scholar
  63. Jiang, Y., & Wagner, L. C. (2004). What is learned in spatial contextual cuing— configuration or individual locations? Perception & Psychophysics, 66(3), 454–463. doi: https://doi.org/10.3758/BF03194893 CrossRefGoogle Scholar
  64. Johnson, J. S., Woodman, G. F., Braun, E., & Luck, S. J. (2007). Implicit memory influences the allocation of attention in visual cortex. Psychonomic Bulletin & Review, 14(5), 834–839. doi: https://doi.org/10.3758/BF03194108 CrossRefGoogle Scholar
  65. Kawahara, J.-I. (2007). Auditory-visual contextual cuing effect. Perception & Psychophysics, 69(8), 1399–1408.CrossRefGoogle Scholar
  66. Kourkoulou, A., Leekam, S. R., & Findlay, J. M. (2012). Implicit learning of local context in Autism Spectrum Disorder. Journal of Autism and Developmental Disorders, 42(2), 244–256. doi: https://doi.org/10.1007/s10803-011-1237-6 CrossRefPubMedGoogle Scholar
  67. Kunar, M. A., Flusberg, S., Horowitz, T. S., & Wolfe, J. M. (2007). Does contextual cuing guide the deployment of attention? Journal of Experimental Psychology: Human Perception and Performance, 33(4), 816–828. doi: https://doi.org/10.1037/0096-1523.33.4.816 CrossRefPubMedGoogle Scholar
  68. Kunar, M. A., Flusberg, S. J., & Wolfe, J. M. (2006). Contextual cuing by global features. Perception & Psychophysics, 68(7), 1204–1216.CrossRefGoogle Scholar
  69. Kunar, M. A., Flusberg, S., & Wolfe, J. M. (2008). The role of memory and restricted context in repeated visual search. Perception & Psychophysics, 70(2), 314–328.CrossRefGoogle Scholar
  70. Kunar, M. A., John, R., & Sweetman, H. (2014a). A configural dominant account of contextual cueing: Configural cues are stronger than colour cues. Quarterly Journal of Experimental Psychology, 67(7), 1366–1382. doi: https://doi.org/10.1080/17470218.2013.863373 CrossRefGoogle Scholar
  71. Kunar, M. A., Watson, D. G., Cole, L., & Cox, A. (2014b). Negative emotional stimuli reduce contextual cueing but not response times in inefficient search. Quarterly Journal of Experimental Psychology, 67(2), 377–393. doi: https://doi.org/10.1080/17470218.2013.815236 CrossRefGoogle Scholar
  72. Kunar, M. A., & Wolfe, J. M. (2011). Target absent trials in configural contextual cuing. Attention, Perception, & Psychophysics, 73(7), 2077. doi: https://doi.org/10.3758/s13414-011-0164-0 CrossRefGoogle Scholar
  73. Lleras, A., & Von Mühlenen, A. (2004). Spatial context and top-down strategies in visual search. Spatial Vision, 17(4–5), 465–482.PubMedGoogle Scholar
  74. Luck, S. J. (2014). An Introduction to the Event-Related Potential Technique. MIT Press.Google Scholar
  75. Luck, S. J., & Hillyard, S. A. (1994). Electrophysiological correlates of feature analysis during visual search. Psychophysiology, 31(3), 291–308.CrossRefPubMedGoogle Scholar
  76. Makovski, T. (2016). What is the context of contextual cueing? Psychonomic Bulletin & Review, 23(6), 1982–1988. doi: https://doi.org/10.3758/s13423-016-1058-x CrossRefGoogle Scholar
  77. Makovski, T., & Jiang, Y. V. (2010). Contextual cost: When a visual-search target is not where it should be. Quarterly Journal of Experimental Psychology, 63(2), 216–225. doi: https://doi.org/10.1080/17470210903281590 CrossRefGoogle Scholar
  78. Makovski, T., Vázquez, G. A., & Jiang, Y. V. (2008). Visual learning in multiple-object tracking. PLOS ONE, 3(5), e2228. doi: https://doi.org/10.1371/journal.pone.0002228 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Manginelli, A. A., Geringswald, F., & Pollmann, S. (2012). Visual search facilitation in repeated displays depends on visuospatial working memory. Experimental Psychology, 59(1), 47–54. doi: https://doi.org/10.1027/1618-3169/a000125 CrossRefPubMedGoogle Scholar
  80. Manginelli, A. A., Langer, N., Klose, D., & Pollmann, S. (2013). Contextual cueing under working memory load: Selective interference of visuospatial load with expression of learning. Attention, Perception, & Psychophysics, 75(6), 1103–1117. doi: https://doi.org/10.3758/s13414-013-0466-5 CrossRefGoogle Scholar
  81. Manginelli, A. A., & Pollmann, S. (2009). Misleading contextual cues: How do they affect visual search? Psychological Research, 73(2), 212–221. doi: https://doi.org/10.1007/s00426-008-0211-1 CrossRefPubMedGoogle Scholar
  82. Meyer, T., Quaedflieg, C. W. E. M., Bisby, J. A., & Smeets, T. (2019). Acute stress - but not aversive scene content - impairs spatial configuration learning. Cognition & Emotion, 1–16. doi: https://doi.org/10.1080/02699931.2019.1604320
  83. Miller, J. (1988). Discrete and continuous models of human information processing: Theoretical distinctions and empirical results. Acta Psychologica, 67(3), 191–257. doi: https://doi.org/10.1016/0001-6918(88)90013-3 CrossRefPubMedGoogle Scholar
  84. Oliva, A., Wolfe, J. M., & Arsenio, H. C. (2004). Panoramic search: The interaction of memory and vision in search through a familiar scene. Journal of Experimental Psychology: Human Perception and Performance, 30(6), 1132–1146. doi: https://doi.org/10.1037/0096-1523.30.6.1132 CrossRefPubMedGoogle Scholar
  85. Olson, I. R., & Chun, M. M. (2001). Temporal contextual cuing of visual attention. Journal of Experimental Psychology. Learning, Memory, and Cognition, 27(5), 1299–1313.CrossRefPubMedGoogle Scholar
  86. Olson, I. R., & Chun, M. M. (2002). Perceptual constraints on implicit learning of spatial context. Visual Cognition, 9(3), 273–302. doi: https://doi.org/10.1080/13506280042000162 CrossRefGoogle Scholar
  87. Olson, I. R., Chun, M. M., & Allison, T. (2001). Contextual guidance of attention: Human intracranial event-related potential evidence for feedback modulation in anatomically early temporally late stages of visual processing. Brain: A Journal of Neurology, 124(Pt 7), 1417–1425.CrossRefGoogle Scholar
  88. Olson, I. R., & Jiang, Y. (2004). Visual short-term memory is not improved by training. Memory & Cognition, 32(8), 1326–1332. doi: https://doi.org/10.3758/BF03206323 CrossRefGoogle Scholar
  89. Olson, I. R., Jiang, Y., & Moore, K. S. (2005). Associative learning improves visual working memory performance. Journal of Experimental Psychology: Human Perception and Performance, 31(5), 889. doi: https://doi.org/10.1037/0096-1523.31.5.889 CrossRefPubMedGoogle Scholar
  90. Peterson, M. S., & Kramer, A. F. (2001). Attentional guidance of the eyes by contextual information and abrupt onsets. Perception & Psychophysics, 63(7), 1239–1249. doi: https://doi.org/10.3758/BF03194537 CrossRefGoogle Scholar
  91. Ratcliff, R., & McKoon, G. (2008). The diffusion decision model: Theory and data for two-choice decision tasks. Neural Computation, 20(4), 873–922. doi: https://doi.org/10.1162/neco.2008.12-06-420 CrossRefPubMedPubMedCentralGoogle Scholar
  92. Rausei, V., Makovski, T., & Jiang, Y. V. (2007). Attention dependency in implicit learning of repeated search context. Quarterly Journal of Experimental Psychology, 60(10), 1321–1328. doi: https://doi.org/10.1080/17470210701515744 CrossRefGoogle Scholar
  93. Rosenbaum, G. M., & Jiang, Y. V. (2013). Interaction between scene-based and array-based contextual cueing. Attention, Perception & Psychophysics, 75(5), 888–899. doi: https://doi.org/10.3758/s13414-013-0446-9 CrossRefGoogle Scholar
  94. Schankin, A., Hagemann, D., & Schubö, A. (2011). Is contextual cueing more than the guidance of visual–spatial attention? Biological Psychology, 87(1), 58–65. doi: https://doi.org/10.1016/j.biopsycho.2011.02.003 CrossRefPubMedGoogle Scholar
  95. Schankin, A., & Schubö, A. (2009). Cognitive processes facilitated by contextual cueing: evidence from event-related brain potentials. Psychophysiology, 46(3), 668–679.CrossRefPubMedGoogle Scholar
  96. Schankin, A., & Schubö, A. (2010). Contextual cueing effects despite spatially cued target locations. Psychophysiology. doi: https://doi.org/10.1111/j.1469-8986.2010.00979.x
  97. Schlagbauer, B., Rausch, M., Zehetleitner, M., Müller, H. J., & Geyer, T. (2018). Contextual cueing of visual search is associated with greater subjective experience of the search display configuration. Neuroscience of Consciousness, 2018(1). doi: https://doi.org/10.1093/nc/niy001
  98. Sewell, D. K., Colagiuri, B., & Livesey, E. J. (2018). Response time modeling reveals multiple contextual cuing mechanisms. Psychonomic Bulletin & Review, 25(5), 1644–1665. doi: https://doi.org/10.3758/s13423-017-1364-y CrossRefGoogle Scholar
  99. Sha, L. Z., Remington, R. W., & Jiang, Y. V. (2018). Statistical learning of anomalous regions in complex faux X-ray images does not transfer between detection and discrimination. Cognitive Research: Principles and Implications, 3(1), 48. doi: https://doi.org/10.1186/s41235-018-0144-1 CrossRefGoogle Scholar
  100. Shen, Y. J., & Jiang, Y. V. (2006). Interrupted visual searches reveal volatile search memory. Journal of Experimental Psychology: Human Perception and Performance, 32(5), 1208–1220. doi: https://doi.org/10.1037/0096-1523.32.5.1208 CrossRefPubMedGoogle Scholar
  101. Solman, G. J. F., & Smilek, D. (2010). Item-specific location memory in visual search. Vision Research, 50(23), 2430–2438. doi: https://doi.org/10.1016/j.visres.2010.09.008 CrossRefPubMedGoogle Scholar
  102. Summerfield, J. J., Lepsien, J., Gitelman, D. R., Mesulam, M. M., & Nobre, A. C. (2006). Orienting attention based on long-term memory experience. Neuron, 49(6), 905–916. doi: https://doi.org/10.1016/j.neuron.2006.01.021 CrossRefPubMedGoogle Scholar
  103. Theeuwes, J. (2010). Top-down and bottom-up control of visual selection. Acta Psychologica, 135(2), 77–99. doi: https://doi.org/10.1016/j.actpsy.2010.02.006 CrossRefPubMedGoogle Scholar
  104. Theeuwes, J. (2019). Goal-driven, stimulus-driven, and history-driven selection. Current Opinion in Psychology, 29, 97–101. doi: https://doi.org/10.1016/j.copsyc.2018.12.024 CrossRefPubMedGoogle Scholar
  105. Todd, R. M., & Manaligod, M. G. M. (2018). Implicit guidance of attention: The priority state space framework. Cortex, 102, 121–138. doi: https://doi.org/10.1016/j.cortex.2017.08.001 CrossRefPubMedGoogle Scholar
  106. Travis, S. L., Mattingley, J. B., & Dux, P. E. (2013). On the role of working memory in spatial contextual cueing. Journal of Experimental Psychology: Learning, Memory, and Cognition, 39(1), 208–219. doi: https://doi.org/10.1037/a0028644 CrossRefPubMedGoogle Scholar
  107. Tseng, Y.-C., & Li, C.-S. R. (2004). Oculomotor correlates of context-guided learning in visual search. Perception & Psychophysics, 66(8), 1363–1378. doi: https://doi.org/10.3758/BF03195004 CrossRefGoogle Scholar
  108. Vadillo, M. A., Konstantinidis, E., & Shanks, D. R. (2016). Underpowered samples, false negatives, and unconscious learning. Psychonomic Bulletin & Review, 23(1), 87–102. doi: https://doi.org/10.3758/s13423-015-0892-6 CrossRefGoogle Scholar
  109. Vickery, T. J., Sussman, R. S., & Jiang, Y. V. (2010). Spatial context learning survives interference from working memory load. Journal of Experimental Psychology: Human Perception and Performance, 36(6), 1358–1371. doi: https://doi.org/10.1037/a0020558 CrossRefPubMedGoogle Scholar
  110. Weigard, A., & Huang-Pollock, C. (2014). A diffusion modeling approach to understanding contextual cueing effects in children with ADHD. Journal of Child Psychology and Psychiatry, 55(12), 1336–1344. doi: https://doi.org/10.1111/jcpp.12250 CrossRefPubMedGoogle Scholar
  111. Wolfe, J. M. (1998). What can 1 million trials tell us about visual search? Psychological Science, 9(1), 33–39. doi: https://doi.org/10.1111/1467-9280.00006 CrossRefGoogle Scholar
  112. Wolfe, J. M., & Horowitz, T. S. (2017). Five factors that guide attention in visual search. Nature Human Behaviour, 1(3), 0058. doi: https://doi.org/10.1038/s41562-017-0058 CrossRefGoogle Scholar
  113. Wolfe, J. M., Klempen, N., & Dahlen, K. (2000). Postattentive vision. Journal of Experimental Psychology. Human Perception and Performance, 26(2), 693–716.CrossRefPubMedGoogle Scholar
  114. Wolfe, J. M., Palmer, E. M., & Horowitz, T. S. (2010). Reaction time distributions constrain models of visual search. Vision Research, 50(14), 1304–1311. doi: https://doi.org/10.1016/j.visres.2009.11.002 CrossRefPubMedGoogle Scholar
  115. Won, B.-Y., & Jiang, Y. V. (2015). Spatial working memory interferes with explicit, but not probabilistic cuing of spatial attention. Journal of Experimental Psychology Learning, Memory, and Cognition, 41(3), 787–806. doi: https://doi.org/10.1037/xlm0000040 CrossRefPubMedGoogle Scholar
  116. Zellin, M., Conci, M., von Mühlenen, A., & Müller, H. J. (2011). Two (or three) is one too many: Testing the flexibility of contextual cueing with multiple target locations. Attention, Perception, & Psychophysics, 73(7), 2065. doi: https://doi.org/10.3758/s13414-011-0175-x CrossRefGoogle Scholar
  117. Zellin, M., von Mühlenen, A., Müller, H. J., & Conci, M. (2014). Long-term adaptation to change in implicit contextual learning. Psychonomic Bulletin & Review. doi: https://doi.org/10.3758/s13423-013-0568-z
  118. Zhao, G., Liu, Q., Jiao, J., Zhou, P., Li, H., & Sun, H.-J. (2012). Dual-state modulation of the contextual cueing effect: Evidence from eye movement recordings. Journal of Vision, 12(6), 11–11. doi: https://doi.org/10.1167/12.6.11 CrossRefPubMedGoogle Scholar

Copyright information

© The Psychonomic Society, Inc. 2019

Authors and Affiliations

  • Caitlin A. Sisk
    • 1
    Email author
  • Roger W. Remington
    • 1
    • 2
  • Yuhong V. Jiang
    • 1
  1. 1.Department of PsychologyUniversity of MinnesotaMinneapolisUSA
  2. 2.School of PsychologyUniversity of QueenslandSt LuciaAustralia

Personalised recommendations