Advertisement

Attention, Perception, & Psychophysics

, Volume 81, Issue 7, pp 2217–2236 | Cite as

On the Neurocircuitry of Grasping: The influence of action intent on kinematic asymmetries in reach-to-grasp actions

  • Jason FlindallEmail author
  • Claudia L. R. Gonzalez
Time for Action: Reaching for a Better Understanding of the Dynamics of Cognition

Abstract

Evidence from electrophysiology suggests that nonhuman primates produce reach-to-grasp movements based on their functional end goal rather than on the biomechanical requirements of the movement. However, the invasiveness of direct-electrical stimulation and single-neuron recording largely precludes analogous investigations in humans. In this review, we present behavioural evidence in the form of kinematic analyses suggesting that the cortical circuits responsible for reach-to-grasp actions in humans are organized in a similar fashion. Grasp-to-eat movements are produced with significantly smaller and more precise maximum grip apertures (MGAs) than are grasp-to-place movements directed toward the same objects, despite near identical mechanical requirements of the two subsequent (i.e., grasp-to-eat and grasp-to-place) movements. Furthermore, the fact that this distinction is limited to right-handed movements suggests that the system governing reach-to-grasp movements is asymmetric. We contend that this asymmetry may be responsible, at least in part, for the preponderance of right-hand dominance among the global population.

Keywords

Reach-to-grasp Grasp-to-eat Kinematics Asymmetries Dual visuomotor channel Grip aperture Handedness 

Notes

Compliance with ethical standards

Authors’ statement

The data and code used to prepare the current report have been made available at https://osf.io/jdutc/?view_only=145d13ffc23b44ad9e76ae26d40a724b (bit.ly/fg2019data). The authors would like to thank the National Science and Engineering Research Council of Canada (NSERC; Grant No. CGSD2-476054-2015) and the University of Lethbridge for their financial support. We declare that neither funding source had any role in study design, or in the collection, analysis, or interpretation of data. This manuscript was prepared and submitted without input from either institution. Neither J.F. nor C.L.R.G. have any financial conflicts of interest to declare.

References

  1. Abusamra, V., Côté, H., Joanette, Y., & Ferreres, A. (2009). Communication impairments in patients with right hemisphere damage. Life Span and Disability, 12(1), 67-82.Google Scholar
  2. Annett, J., Annett, M., Hudson, P., & Turner, A. (1979). The control of movement in the preferred and non-preferred hands. The Quarterly Journal of Experimental Psychology, 31(4), 641–652.PubMedGoogle Scholar
  3. Annett, M. (1967). The binomial distribution of right, mixed and left handedness. The Quarterly Journal of Experimental Psychology, 19(4), 327–333.PubMedGoogle Scholar
  4. Annett, M. (1970). A classification of hand preference by association analysis. British Journal of Psychology, 61, 303–321.PubMedGoogle Scholar
  5. Annett, M. (1985). Left, right, hand and brain: The right shift theory. London: Psychology Press.Google Scholar
  6. Annett, M. (2013). Handedness and brain asymmetry: The right shift theory. London: Psychology Press.Google Scholar
  7. Ansuini, C., Giosa, L., Turella, L., Altoè, G., & Castiello, U. (2008). An object for an action, the same object for other actions: Effects on hand shaping. Experimental Brain Research, 185(1), 111–119.PubMedGoogle Scholar
  8. Armbrüster, C., & Spijkers, W. (2006). Movement planning in prehension: Do intended actions influence the initial reach and grasp movement? Motor Control, 10(4), 311–329.PubMedGoogle Scholar
  9. Astafiev, S. V., Shulman, G. L., Stanley, C. M., Snyder, A. Z., Van Essen, D. C., & Corbetta, M. (2003). Functional organization of human intraparietal and frontal cortex for attending, looking, and pointing. Journal of Neuroscience, 23(11), 4689–4699.PubMedGoogle Scholar
  10. Bagesteiro, L. B., & Sainburg, R. L. (2003). Nondominant arm advantages in load compensation during rapid elbow joint movements. Journal of Neurophysiology, 90(3), 1503–1513.PubMedGoogle Scholar
  11. Barthélémy, S., & Boulinguez, P. (2002). Manual asymmetries in the directional coding of reaching: Further evidence for hemispatial effects and right hemisphere dominance for movement planning. Experimental Brain Research, 147(3), 305–312.PubMedGoogle Scholar
  12. Bax, J. S., & Ungar, P. S. (1999). Incisor labial surface wear striations in modern humans and their implications for handedness in Middle and Late Pleistocene hominids. International Journal of Osteoarchaeology, 9(3), 189–198.Google Scholar
  13. Becchio, C., Sartori, L., Bulgheroni, M., & Castiello, U. (2008). The case of Dr. Jekyll and Mr. Hyde: A kinematic study on social intention. Consciousness and Cognition, 17(3), 557–564.PubMedGoogle Scholar
  14. Begliomini, C., Nelini, C., Caria, A., Grodd, W., & Castiello, U. (2008). Cortical activations in humans grasp-related areas depend on hand used and handedness. PLOS ONE, 3(10), e3388.PubMedPubMedCentralGoogle Scholar
  15. Begun, D., & Walker, A. (1993). The endocast. In A. Walker & R. Leakey (Eds.), The Nariokotome Homo erectus skeleton (pp. 326–358). Cambridge: Harvard University Press.Google Scholar
  16. Beke, C., Flindall, J. W., & Gonzalez, C. (2018). Kinematics of ventrally mediated grasp-to-eat actions: Right-hand advantage is dependent on dorsal stream input. Experimental Brain Research, 236, 10.Google Scholar
  17. Binkofski, F., & Buxbaum, L. J. (2013). Two action systems in the human brain. Brain and Language, 127(2), 222–229.PubMedGoogle Scholar
  18. Bonini, L., Rozzi, S., Serventi, F. U., Simone, L., Ferrari, P. F., & Fogassi, L. (2010). Ventral premotor and inferior parietal cortices make distinct contribution to action organization and intention understanding. Cerebral Cortex, 20(6), 1372–1385.PubMedGoogle Scholar
  19. Bonini, L., Serventi, F. U., Bruni, S., Maranesi, M., Bimbi, M., Simone, L., … Fogassi, L. (2012). Selectivity for grip type and action goal in macaque inferior parietal and ventral premotor grasping neurons. Journal of Neurophysiology, 108(6), 1607–1619.PubMedGoogle Scholar
  20. Bootsma, R. J., Marteniuk, R. G., MacKenzie, C. L., & Zaal, F. (1994). The speed–accuracy trade-off in manual prehension: Effects of movement amplitude, object size, and object width on kinematic characteristics. Experimental Brain Research, 98, 535–541.PubMedGoogle Scholar
  21. Boulinguez, P., Nougier, V., & Velay, J.-L. (2001a). Manual asymmetries in reaching movement control. I: Study of right-handers. Cortex, 37, 101–122.PubMedGoogle Scholar
  22. Boulinguez, P., Velay, J.-L., & Nougier, V. (2001b). Manual asymmetries in reaching movement control. II: Study of left-handers. Cortex, 37, 123–138.PubMedGoogle Scholar
  23. Braccini, S. N., Lambeth, S. P., Schapiro, S. J., & Fitch, W. T. (2012). Eye preferences in captive chimpanzees. Animal cognition, 15(5), 971–978.PubMedGoogle Scholar
  24. Brackenridge, C. (1981). Secular variation in handedness over ninety years. Neuropsychologia, 19(3), 459–462.PubMedGoogle Scholar
  25. Brown, N. A., & Wolpert, L. (1990). The development of handedness in left/right asymmetry. Development, 109(1), 1–9.PubMedGoogle Scholar
  26. Carnahan, H. (1998). Manual asymmetries in response to rapid target movement. Brain and Cognition, 37(2), 237–253.PubMedGoogle Scholar
  27. Cashmore, L., Uomini, N., & Chapelain, A. (2008). The evolution of handedness in humans and great apes: A review and current issues. Journal of Archaeological Science, 86, 7–35.Google Scholar
  28. Castiello, U., Bennett, K., & Stelmach, G. (1993). Reach to grasp: the natural response to perturbation of object size. Experimental Brain Research, 94, 163–178.PubMedGoogle Scholar
  29. Cavallo, A., Koul, A., Ansuini, C., Capozzi, F., & Becchio, C. (2016). Decoding intentions from movement kinematics. Scientific Reports, 6.Google Scholar
  30. Cavina-Pratesi, C., Monaco, S., Fattori, P., Galletti, C., McAdam, T. D., Quinlan, D. J., … Culham, J. C. (2010). Functional magnetic resonance imaging reveals the neural substrates of arm transport and grip formation in reach-to-grasp actions in humans. Journal of Neuroscience, 30(31), 10306–10323.PubMedGoogle Scholar
  31. Chen, F.-C., & Li, W.-H. (2001). Genomic divergences between humans and other hominoids and the effective population size of the common ancestor of humans and chimpanzees. The American Journal of Human Genetics, 68(2), 444–456.PubMedGoogle Scholar
  32. Chieffi, S., & Gentilucci, M. (1993). Coordination between the transport and the grasp components during prehension movements. Experimental Brain Research, 94(3), 471–477.PubMedGoogle Scholar
  33. Cochet, H. (2016). Manual asymmetries and hemispheric specialization: Insight from developmental studies. Neuropsychologia, 93, 335–341.PubMedGoogle Scholar
  34. Cochet, H., & Byrne, R. W. (2013). Evolutionary origins of human handedness: Evaluating contrasting hypotheses. Animal Cognition, 16(4), 531–542.PubMedPubMedCentralGoogle Scholar
  35. Cooke, D. F., & Graziano, M. S. (2004a). Sensorimotor integration in the precentral gyrus: Polysensory neurons and defensive movements. Journal of Neurophysiology, 91(4), 1648–1660.PubMedGoogle Scholar
  36. Cooke, D. F., & Graziano, M. S. (2004b). Super-flinchers and nerves of steel: defensive movements altered by chemical manipulation of a cortical motor area. Neuron, 43(4), 585–593.PubMedGoogle Scholar
  37. Corballis, M. C. (1989). Laterality and human evolution. Psychological Review, 96(3), 492.PubMedGoogle Scholar
  38. Corballis, M. C. (1997). The genetics and evolution of handedness. Psychological Review, 104(4), 714.PubMedGoogle Scholar
  39. Corballis, M. C., Badzakova-Trajkov, G., & Häberling, I. S. (2012). Right hand, left brain: Genetic and evolutionary bases of cerebral asymmetries for language and manual action. Wiley Interdisciplinary Reviews: Cognitive Science, 3(1), 1–17.PubMedGoogle Scholar
  40. Corballis, M. C., & Morgan, M. J. (1978). On the biological basis of human laterality: I. Evidence for a maturational left–right gradient. Behavioral and Brain Sciences, 1(2), 261–269.Google Scholar
  41. Coren, S., & Porac, C. (1977). Fifty centuries of right-handedness: The historical record. Science, 198(4317), 631–632.PubMedGoogle Scholar
  42. Cornford, J. (1986). Specialized resharpening techniques and evidence of handedness. La Cotte de St. Brelade 1961–1978: Excavations by CBM McBurney, 337–351.Google Scholar
  43. Crajé, C., Lukos, J. R., Ansuini, C., Gordon, A. M., & Santello, M. (2011). The effects of task and content on digit placement on a bottle. Experimental Brain Research, 212(1), 119–124.PubMedGoogle Scholar
  44. Crow, T. J. (1995). A Darwinian approach to the origins of psychosis. The British Journal of Psychiatry, 167(1), 12–25.PubMedGoogle Scholar
  45. Culham, J. C., Cavina-Pratesi, C., & Singhal, A. (2006). The role of parietal cortex in visuomotor control: What have we learned from neuroimaging? Neuropsychologia, 44(13), 2668–2684.Google Scholar
  46. Davare, M., Andres, M., Cosnard, G., Thonnard, J.-L., & Olivier, E. (2006). Dissociating the role of ventral and dorsal premotor cortex in precision grasping. The Journal of Neuroscience, 26(8), 2260–2268.PubMedPubMedCentralGoogle Scholar
  47. Davare, M., Kraskov, A., Rothwell, J. C., & Lemon, R. N. (2011). Interactions between areas of the cortical grasping network. Current Opinion in Neurobiology, 21(4), 565–570.PubMedPubMedCentralGoogle Scholar
  48. Davare, M., Lemon, R., & Olivier, E. (2008). Selective modulation of interactions between ventral premotor cortex and primary motor cortex during precision grasping in humans. The Journal of Physiology, 586(11), 2735–2742.PubMedPubMedCentralGoogle Scholar
  49. Desmurget, M., Reilly, K. T., Richard, N., Szathmari, A., Mottolese, C., & Sirigu, A. (2009). Movement intention after parietal cortex stimulation in humans. Science, 324(5928), 811–813.PubMedGoogle Scholar
  50. Duff, S. V., & Sainburg, R. L. (2007). Lateralization of motor adaptation reveals independence in control of trajectory and steady-state position. Experimental Brain Research, 179(4), 551–561.PubMedGoogle Scholar
  51. Duque, J., Murase, N., Celnik, P., Hummel, F., Harris-Love, M., Mazzocchio, R., … Cohen, L. G. (2007). Intermanual differences in movement-related interhemispheric inhibition. Journal of Cognitive Neuroscience, 19(2), 204–213.PubMedGoogle Scholar
  52. Elliott, D., Hansen, S., Grierson, L. E., Lyons, J., Bennett, S. J., & Hayes, S. J. (2010). Goal-directed aiming: Two components but multiple processes. Psychological Bulletin, 136(6), 1023.PubMedGoogle Scholar
  53. Elliott, D., Helsen, W. F., & Chua, R. (2001). A century later: Woodworth's (1899) two-component model of goal-directed aiming. Psychological Bulletin, 127(3), 342.PubMedGoogle Scholar
  54. Fagot, J., & Vauclair, J. (1991). Manual laterality in nonhuman primates: A distinction between handedness and manual specialization. Psychological Bulletin, 109(1), 76.PubMedGoogle Scholar
  55. Falk, D. (1983). The Taung endocast: A reply to Holloway. American Journal of Physical Anthropology, 60(4), 479–489.PubMedGoogle Scholar
  56. Fattori, P., Breveglieri, R., Bosco, A., Gamberini, M., & Galletti, C. (2017). Vision for prehension in the medial parietal cortex. Cerebral Cortex, 27(2), 1149–1163.PubMedGoogle Scholar
  57. Faurie, C., Schiefenhvel, W., leBomin, S., Billiard, S., & Raymond, M. (2005). Variation in the frequency of left-handedness in traditional societies. Current Anthropology, 46(1), 142–147.Google Scholar
  58. Ferri, S., Peeters, R., Nelissen, K., Vanduffel, W., Rizzolatti, G., & Orban, G. A. (2015). A human homologue of monkey F5c. NeuroImage, 111, 251–266.PubMedPubMedCentralGoogle Scholar
  59. Filippini, M., Breveglieri, R., Akhras, M. A., Bosco, A., Chinellato, E., & Fattori, P. (2017). Decoding information for grasping from the macaque dorsomedial visual stream. Journal of Neuroscience, 37(16), 4311–4322.  https://doi.org/10.1523/JNEUROSCI.3077-16.2017. 3077–3016CrossRefPubMedGoogle Scholar
  60. Fisher, E. M., Beer-Romero, P., Brown, L. G., Ridley, A., McNeil, J. A., Lawrence, J. B., … Page, D. C. (1990). Homologous ribosomal protein genes on the human X and Y chromosomes: Escape from X inactivation and possible implications for Turner syndrome. Cell, 63(6), 1205–1218.PubMedGoogle Scholar
  61. Fitch, W. T., & Braccini, S. N. (2013). Primate laterality and the biology and evolution of human handedness: A review and synthesis. Annals of the New York Academy of Sciences, 1288(1), 70–85.PubMedGoogle Scholar
  62. Flindall, J. W., Doan, J. B., & Gonzalez, C. (2014). Manual asymmetries in the kinematics of a reach-to-grasp action. Laterality: Asymmetries of Body, Brain and Cognition, 19(4), 489–507.Google Scholar
  63. Flindall, J. W., & Gonzalez, C. (2013). On the evolution of handedness: Evidence for feeding biases. PLOS ONE, 8(11), e78967.PubMedPubMedCentralGoogle Scholar
  64. Flindall, J. W., & Gonzalez, C. (2014). Eating interrupted: The effect of intent on hand-to-mouth actions. Journal of Neurophysiology, 112(8), 2019–2025.PubMedGoogle Scholar
  65. Flindall, J. W., & Gonzalez, C. (2015). Children’s bilateral advantage for grasp-to-eat actions becomes unimanual by age 10 years. Journal of Experimental Child Psychology, 133, 57–71.PubMedGoogle Scholar
  66. Flindall, J. W., & Gonzalez, C. (2016). The destination defines the journey: An examination of the kinematics of hand-to-mouth movements. Journal of Neurophysiology, 116(5), 2105–2113.PubMedPubMedCentralGoogle Scholar
  67. Flindall, J. W., & Gonzalez, C. (2017). The inimitable mouth: Task-dependent kinematic differences are independent of terminal precision. Experimental Brain Research, 235(6), 1945–1952.  https://doi.org/10.1007/s00221-017-4943-2 CrossRefPubMedGoogle Scholar
  68. Flindall, J. W., Stone, K., & Gonzalez, C. (2015). Evidence for right-hand feeding biases in a left-handed population. Laterality: Asymmetries of Body, Brain and Cognition, 20(3), 287–305.Google Scholar
  69. Flowers, K. (1975). Handedness and controlled movement. British Journal of Psychology, 66(1), 39–52.PubMedGoogle Scholar
  70. Foley, J. (1975). Error in visually directed manual pointing. Attention, Perception, & Psychophysics, 17(1), 69–74.Google Scholar
  71. Franz, V. H., Hesse, C., & Kollath, S. (2007). Grasping after a delay: More ventral than dorsal? Journal of Vision, 7(9), 157.  https://doi.org/10.1167/7.9.157 CrossRefGoogle Scholar
  72. Frayer, D. W., Clarke, R. J., Fiore, I., Blumenschine, R. J., Pérez-Pérez, A., Martinez, L. M., … Bondioli, L. (2016). OH-65: The earliest evidence for right-handedness in the fossil record. Journal of Human Evolution, 100, 65–72.PubMedGoogle Scholar
  73. Frayer, D. W., Fiore, I., Lalueza-Fox, C., Radovcic, J., & Bondioli, L. (2010). Right handed Neandertals: Vindija and beyond. Journal of Anthropological Sciences, 88, 113–127.PubMedGoogle Scholar
  74. Freud, E., Macdonald, S. N., Chen, J., Quinlan, D. J., Goodale, M., & Culham, J. C. (2018). Getting a grip on reality: Grasping movements directed to real objects and images rely on dissociable neural representations. Cortex, 98, 34–48.PubMedGoogle Scholar
  75. Frey, S. H., Funnell, M. G., Gerry, V. E., & Gazzaniga, M. S. (2005). A dissociation between the representation of tool-use skills and hand dominance: Insights from left-and right-handed callosotomy patients. Journal of cognitive neuroscience, 17(2), 262–272.PubMedGoogle Scholar
  76. Friedman, J., & Flash, T. (2007). Task-dependent selection of grasp kinematics and stiffness in human object manipulation. Cortex, 43(3), 444–460.PubMedGoogle Scholar
  77. Gallivan, J. P., & Culham, J. C. (2015). Neural coding within human brain areas involved in actions. Current Opinion in Neurobiology, 33, 141–149.PubMedGoogle Scholar
  78. Gallivan, J. P., McLean, D. A., Valyear, K. F., Pettypiece, C. E., & Culham, J. C. (2011). Decoding action intentions from preparatory brain activity in human parieto-frontal networks. The Journal of Neuroscience, 31(26), 9599–9610.PubMedPubMedCentralGoogle Scholar
  79. Goldenberg, G. (2003). Apraxia and beyond: life and work of Hugo Liepmann. Cortex, 39(3), 509-524.PubMedGoogle Scholar
  80. Gonzalez, C., Flindall, J. W., & Stone, K. (2014). Hand preference across the lifespan: Effects of end-goal, task nature, and object location. Name: Frontiers in Psychology, 5, 1579.  https://doi.org/10.3389/fpsyg.2014.01579 CrossRefGoogle Scholar
  81. Goodale, M. (1988). Hemispheric differences in motor control. Behavioural Brain Research, 30(2), 203–214.PubMedGoogle Scholar
  82. Goodale, M. (1990). Vision and action: The control of grasping. Norwood: ABLEX Publishing Corporation.Google Scholar
  83. Goodale, M. (2011). Transforming vision into action. Vision Research, 51(13), 1567–1587.PubMedGoogle Scholar
  84. Goodale, M., & Milner, A. (1992). Seperate visual pathways for perception and action. Trends in Neuroscience, 15(1), 20–25.Google Scholar
  85. Grafton, S. T. (2010). The cognitive neuroscience of prehension: Recent developments. Experimental Brain Research, 204(4), 475–491.PubMedPubMedCentralGoogle Scholar
  86. Graziano, M. S. (2006). The organization of behavioral repertoire in motor cortex. Annual Review of Neuroscience, 29, 105–134.PubMedGoogle Scholar
  87. Graziano, M. S., Aflalo, T. N., & Cooke, D. F. (2005). Arm movements evoked by electrical stimulation in the motor cortex of monkeys. Journal of Neurophysiology, 94(6), 4209–4223.PubMedGoogle Scholar
  88. Graziano, M. S., Taylor, C. S., & Moore, T. (2002). Complex movements evoked by microstimulation of precentral cortex. Neuron, 34(5), 841–851.PubMedGoogle Scholar
  89. Grol, M. J., Majdandžić, J., Stephan, K. E., Verhagen, L., Dijkerman, H. C., Bekkering, H., … Toni, I. (2007). Parieto-frontal connectivity during visually guided grasping. Journal of Neuroscience, 27(44), 11877–11887.PubMedGoogle Scholar
  90. Grosskopf, A., & Kuhtz-Buschbeck, J. P. (2006). Grasping with the left and right hand: A kinematic study. Experimental Brain Research, 168, 230–240.PubMedGoogle Scholar
  91. Grouios, G. (2006). Right hand advantage in visually guided reaching and aiming movements: Brief review and comments. Ergonomica, 49(10), 1013–1017.Google Scholar
  92. Hanzlik, A. J., Binder, M., Layton, W. M., Rowe, L., Layton, M., Taylor, B. A., … Stewart, G. D. (1990). The murine situs inversus viscerum (iv) gene responsible for visceral asymmetry is linked tightly to the Igh-C cluster on chromosome 12. Genomics, 7(3), 389–393.PubMedGoogle Scholar
  93. Harrington, D. L., & Haaland, K. Y. (1991). Hemispheric specialization for motor sequencing: Abnormalities in levels of programming. Neuropsychologia, 29(2), 147–163.PubMedGoogle Scholar
  94. Heath, M., Westwood, D. A., Roy, E. A., & Young, R. P. (2002). Manual asymmetries in tool-use: Implications for apraxia. Laterality: Asymmetries of Body, Brain and Cognition, 7(2), 131–143.Google Scholar
  95. Heider, B. (2000). Visual form agnosia: Neural mechanisms and anatomical foundations. Neurocase, 6(1), 1–12.Google Scholar
  96. Helsen, W. F., Starkes, J. L., Elliott, D., & Buekers, M. J. (1998). Manual asymmetries and saccadic eye movements in right-handers during single and reciprocal aiming movements. Cortex, 34(4), 513–530.PubMedGoogle Scholar
  97. Hesse, C., Lane, A. R., Aimola, L., & Schenk, T. (2012). Pathways involved in human conscious vision contribute to obstacle-avoidance behaviour. European Journal of Neuroscience, 36(3), 2383–2390.PubMedGoogle Scholar
  98. Holloway, R. L. (1978). The relevance of endocasts for studying primate brain evolution. In C. R. Noback (Ed.), Sensory systems of primates (pp. 181–200). Boston: Springer.Google Scholar
  99. Holloway, R. L. (1981). The Indonesian Homo erectus brain endocasts revisited. American Journal of Physical Anthropology, 55(4), 503–521.Google Scholar
  100. Holmes, S. A., Mulla, A., Binsted, G., & Heath, M. (2011). Visually and memory-guided grasping: Aperture shaping exhibits a time-dependent scaling to Weber’s law. Vision Research, 51(17), 1941–1948.PubMedGoogle Scholar
  101. Hook-Costigan, M., & Rogers, L. (1995). Hand, mouth and eye preferences in the common marmoset (Callithrix jacchus). Folia Primatologica, 64(4), 180–191.Google Scholar
  102. Hu, Y., Eagleson, R., & Goodale, M. (1999). The effects of delay on the kinematics of grasping. Experimental Brain Research, 126, 109–116.PubMedGoogle Scholar
  103. Hu, Y., & Goodale, M. (2000). Grasping after a delay shifts size-scaling from absolute to relative metrics. Journal of Conitive Neuroscience, 12(5), 856–868.Google Scholar
  104. Jacquet, A. Y., Esseily, R., Rider, D., & Fagard, J. (2012). Handedness for grasping objects and declarative pointing: A longitudinal study. Developmental Psychobiology, 54(1), 36–46.PubMedGoogle Scholar
  105. Jakobson, L. S., Archibald, Y. M., Carey, D. P., & Goodale, M. (1991). A kinematic anaysis of reaching and grasping movments in a patient recovering from optic ataxia. Neuropsychologia, 29(8), 803–805.PubMedGoogle Scholar
  106. Jeannerod, M. (1981). Intersegmental coordination during reaching at natural visual objects. In J. Long & A. Badeley (Eds.), Attention and performance IX (pp. 153–169). Hillsdale: Erlbaum.Google Scholar
  107. Jeannerod, M. (1984). The timing of natural prehension movements. Journal of Motor Behavior, 16(3), 235–254.PubMedGoogle Scholar
  108. Jeannerod, M. (1986a). The formation of finger grip during prehension. A cortically mediated visuomotor pattern. Behavioural Brain Research, 19(2), 99–116.PubMedGoogle Scholar
  109. Jeannerod, M. (1986b). Mechanisms of visuomotor coordination: A study in normal and brain-damaged subjects. Neuropsychologia, 24(1), 41–78.PubMedGoogle Scholar
  110. Jeannerod, M., & Biguer, B. (1982). Visuomotor mechanisms in reaching within extrapersonal space. In D. Ingle, M. Goodale, & R. Mansfield (Eds.), Advances in the analysis of visual behaviour. Cambridge: MIT Press.Google Scholar
  111. Johnson-Frey, S. H., Newman-Norlund, R., & Grafton, S. T. (2004). A distributed left hemisphere network active during planning of everyday tool use skills. Cerebral Cortex, 15(6), 681–695.PubMedGoogle Scholar
  112. Karl, J. M., & Whishaw, I. Q. (2013). Different evolutionary origins for the reach and the grasp: An explanation for dual visuomotor channels in primate parietofrontal cortex. Frontiers in Neurology, 4, 208.  https://doi.org/10.3389/fneur.2013.00208 CrossRefPubMedPubMedCentralGoogle Scholar
  113. Karnath, H.-O., Rüter, J., Mandler, A., & Himmelbach, M. (2009). The anatomy of object recognition—Visual form agnosia caused by medial occipitotemporal stroke. The Journal of Neuroscience, 29(18), 5854–5862.PubMedPubMedCentralGoogle Scholar
  114. Kimura, D., & Archibald, Y. (1974). Motor functions of the left hemisphere. Brain, 97(2), 337–350.PubMedGoogle Scholar
  115. Knecht, S., Deppe, M., Dräger, B., Bobe, L., Lohmann, H., Ringelstein, E.-B., & Henningsen, H. (2000a). Language lateralization in healthy right-handers. Brain, 123(1), 74–81.PubMedGoogle Scholar
  116. Knecht, S., Dräger, B., Deppe, M., Bobe, L., Lohmann, H., Flöel, A., … Henningsen, H. (2000b). Handedness and hemispheric language dominance in healthy humans. Brain, 123(12), 2512–2518.PubMedGoogle Scholar
  117. Kudoh, N., Hattori, M., Numata, N., & Maruyama, K. (1997). An analysis of spatiotemporal variability during prehension movements: Effects of object size and distance. Experimental Brain Research, 117, 457–464.PubMedGoogle Scholar
  118. Laimgruber, K., Goldenberg, G., & Hermsdörfer, J. (2005). Manual and hemispheric asymmetries in the execution of actual and pantomimed prehension. Neuropsychologia, 43(5), 682–692.PubMedGoogle Scholar
  119. Lavrysen, A., Elliott, D., Buekers, M. J., Feys, P., & Helsen, W. F. (2007). Eye–hand coordination asymmetries in manual aiming. Journal of Motor Behavior, 39(1), 9–18.PubMedGoogle Scholar
  120. Layton, J. W. (1976). Random determination of a developmental process: Reversal of normal visceral asymmetry in the mouse. The Journal of heredity, 67(6), 336–338.PubMedGoogle Scholar
  121. Levy, J. (1974). Psychobiological implications of bilateral asymmetry. In S. J. Dimond & J. Graham Beaumont (Eds.), Hemisphere function in the human brain (pp. 121–183). Oxford: Wiley.Google Scholar
  122. Liepmann, H. (1900). Das Krankheitsbild der Apraxie (Motorische asymbolie): Auf Grund eines Falles von einseitiger Apraxie. Monatschrift für Psychiatrie und Neurologie, 8, 15-44.Google Scholar
  123. Lomas, J., & Kimura, D. (1976). Intrahemispheric interaction between speaking and sequential manual activity. Neuropsychologia, 14(1), 23–33.PubMedGoogle Scholar
  124. MacNeilage, P. F. (2007). Present status of the postural origins theory. Special Topics in Primatology, 5, 58–91.Google Scholar
  125. MacNeilage, P. F., Studdert-Kennedy, M. G., & Lindblom, B. (1987). Primate handedness reconsidered. Behavioral and Brain Sciences, 10(02), 247-263.Google Scholar
  126. Marteniuk, R. G., MacKenzie, C. L., Jeannerod, M., Athenes, S., & Dugas, C. (1987). Constraints on human arm movement trajectories. Canadian Journal of Psychology/Revue canadienne de psychologie, 41(3), 365.Google Scholar
  127. McManus, I. (1985). Handedness, language dominance and aphasia: A genetic model. Psychological Medicine Monograph Supplement, 8, 3–40.Google Scholar
  128. McManus, I., Martin, N., Stubbings, G., Chung, E., & Mitchison, H. (2004). Handedness and situs inversus in primary ciliary dyskinesia. Proceedings of the Royal Society of London. Series B: Biological Sciences, 271(1557), 2579–2582.Google Scholar
  129. Mieschke, P. E., Elliott, D., Helsen, W. F., Carson, R. G., & Coull, J. A. (2001). Manual asymmetries in the preparation and control of goal-directed movements. Brain and Cognition, 45, 129–140.PubMedGoogle Scholar
  130. Milner, A., & Goodale, M. (2008). Two visual systems re-viewed. Neuropsychologia, 46(3), 774–785.PubMedGoogle Scholar
  131. Milner, A., Perrett, D., Johnston, R. S., Benson, P., Jordan, T. R., Heeley, D. W., … Davidson, D. L. (1991). Perception and action in ‘visual form agnosia’. Brain, 114(1), 405–428.PubMedGoogle Scholar
  132. Monaco, S., Cavina-Pratesi, C., Sedda, A., Fattori, P., Galletti, C., & Culham, J. C. (2011). Functional magnetic resonance adaptation reveals the involvement of the dorsomedial stream in hand orientation for grasping. Journal of Neurophysiology, 106(5), 2248–2263.PubMedGoogle Scholar
  133. Mutha, P. K., Haaland, K. Y., & Sainburg, R. L. (2013). Rethinking motor lateralization: Specialized but complementary mechanisms for motor control of each arm. PLOS ONE, 8(3), e58582.PubMedPubMedCentralGoogle Scholar
  134. Mutha, P. K., Sainburg, R. L., & Haaland, K. Y. (2011). Left parietal regions are critical for adaptive visuomotor control. Journal of Neuroscience, 31(19), 6972–6981.PubMedGoogle Scholar
  135. Olivier, E., Davare, M., Andres, M., & Fadiga, L. (2007). Precision grasping in humans: From motor control to cognition. Current Opinion in Neurobiology, 17(6), 644–648.PubMedGoogle Scholar
  136. Paulignan, Y., Frak, V. G., Toni, I., & Jeannerod, M. (1997). Influence of object position and size on human prehension movements. Experimental Brain Research, 114, 226–234.PubMedGoogle Scholar
  137. Penfield, W., & Boldrey, E. (1937). Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain: A Journal of Neurology, 60(4), 389–443.  https://doi.org/10.1093/brain/60.4.389 CrossRefGoogle Scholar
  138. Perenin, M., & Vighetto, A. (1988). Optic ataxia: A specific disruption in visuomotor mechanisms. Brain, 111(3), 643–674.Google Scholar
  139. Peters, M. (1981). Attentional asymmetries during concurrent bimanual performance. The Quarterly Journal of Experimental Psychology, 33(1), 95–103.Google Scholar
  140. Pettypiece, C. E., Goodale, M., & Culham, J. C. (2010). Integration of haptic and visual size cues in perception and action revealed through cross-modal conflict. Experimental Brain Research, 201(4), 863–873.PubMedGoogle Scholar
  141. Pitzalis, S., Sereno, M. I., Committeri, G., Fattori, P., Galati, G., Tosoni, A., & Galletti, C. (2013). The human homologue of macaque area V6A. NeuroImage, 82, 517–530.PubMedGoogle Scholar
  142. Porac, C., & Coren, S. (1981). Lateral preferences and human behavior. New York: Springer.Google Scholar
  143. Rizzolatti, G., & Matelli, M. (2003). Two different streams form the dorsal visual system: Anatomy and functions. Experimental Brain Research, 153(2), 146–157.PubMedGoogle Scholar
  144. Roy, E. A., & Elliott, D. (1986). Manual asymmetries in visually directed aiming. Canadian Journal of Psychology, 40, 109–121.PubMedGoogle Scholar
  145. Roy, E. A., & Elliott, D. (1989). Manual asymmetries in aimed movements. Quarterly Journal of Experimental Psychology, 41a, 501–516.Google Scholar
  146. Roy, E. A., Kalbfleisch, L., & Elliott, D. (1994). Kinematic analyses of manual asymmetries in visual aiming movements. Brain and Cognition, 24(2), 289–295.  https://doi.org/10.1006/brcg.1994.1017 CrossRefPubMedGoogle Scholar
  147. Rushworth, M. F., Nixon, P. D., Wade, D. T., Renowden, S., & Passingham, R. E. (1998). The left hemisphere and the selection of learned actions. Neuropsychologia, 36(1), 11–24.PubMedGoogle Scholar
  148. Sacrey, L. A. R., Alaverdashvili, M., & Whishaw, I. Q. (2009). Similar hand shaping in reaching-for-food (skilled reaching) in rats and humans provides evidence of homology in release, collection, and manipulation movements. Behavioural Brain Research, 204(1), 153–161.PubMedGoogle Scholar
  149. Sacrey, L. A. R., Arnold, B., Whishaw, I. Q., & Gonzalez, C. (2013). Precocious hand use preference in reach-to-eat behavior versus manual construction in 1- to 5-year-old children. Developmental Psychobiology, 55(8), 902–911.PubMedGoogle Scholar
  150. Sainburg, R. L. (2002). Evidence for a dynamic-dominance hypothesis of handedness. Experimental Brain Research, 142(2), 241–258.PubMedGoogle Scholar
  151. Schaefer, S. Y., Haaland, K. Y., & Sainburg, R. L. (2009). Hemispheric specialization and functional impact of ipsilesional deficits in movement coordination and accuracy. Neuropsychologia, 47(13), 2953–2966.PubMedPubMedCentralGoogle Scholar
  152. Schenk, T., & McIntosh, R. D. (2010). Do we have independent visual streams for perception and action? Cognitive Neuroscience, 1(1), 52–62.PubMedGoogle Scholar
  153. Seegelke, C., Hughes, C., & Schack, T. (2011). An investigation into manual asymmetries in grasp behaviour and kinematics during an object manipulation task. Experimental Brain Research, 215, 65–75.PubMedGoogle Scholar
  154. Shields, J. (1991). Semantic-pragmatic disorder: A right hemisphere syndrome? British Journal of Disorders of Communication, 26(3), 383–392.PubMedGoogle Scholar
  155. Sicotte, N. L., Woods, R. P., & Mazziotta, J. C. (1999). Handedness in twins: A meta-analysis. Laterality: Asymmetries of Body, Brain and Cognition, 4(3), 265–286.Google Scholar
  156. Smeets, J., & Brenner, E. (2001). Independent movements of the digits in grasping. Experimental Brain Research, 139, 92–100.PubMedGoogle Scholar
  157. Steele, J. (2000). Handedness in past human populations: skeletal markers. Laterality: Asymmetries of Body, Brain and Cognition, 5(3), 193–220.Google Scholar
  158. Stins, J. F., Kadar, E. E., & Costall, A. (2001). A kinematic analysis of hand selection in a reaching task. Laterality: Asymmetries of Body, Brain and Cognition, 6(4), 347–367.Google Scholar
  159. Stone, K. D., Bryant, D. C., & Gonzalez, C. (2012). Hand use for grasping in a bimanual task: Evidence for different roles? Experimental Brain Research 222(3), 1–13.  https://doi.org/10.1007/s00221-012-3325-z CrossRefGoogle Scholar
  160. Toth, N. (1985). Archaeological evidence for preferential right-handedness in the Lower and Middle Pleistocene, and its possible implications. Journal of Human Evolution, 14(6), 607–614.Google Scholar
  161. Tretriluxana, J., Gordon, J., & Winstein, C. J. (2008). Manual asymmetries in grasp pre-shaping and transport-grasp coordination. Experimental Brain Research, 188, 305–315.PubMedGoogle Scholar
  162. Trinkaus, E., Churchill, S. E., & Ruff, C. B. (1994). Postcranial robusticity in Homo. II: Humeral bilateral asymmetry and bone plasticity. American Journal of Physical Anthropology, 93(1), 1–34.PubMedGoogle Scholar
  163. Valyear, K. F., Chapman, C. S., Gallivan, J. P., Mark, R. S., & Culham, J. C. (2011). To use or to move: Goal-set modulates priming when grasping real tools. Experimental Brain Research, 212(1), 125–142.PubMedGoogle Scholar
  164. van Doorn, R. R. A. (2008). Manual asymmetries in the temporal and spatial control of aimed movements. Human Movement Science, 27, 551–576.PubMedGoogle Scholar
  165. van Rootselaar, N., Flindall, J. W., & Gonzalez, C. (2018). Hear speech, change your reach: Changes in the left-hand grasp-to-eat action during speech processing. Experimental Brain Research, 236(12), 3267–3277 .PubMedGoogle Scholar
  166. Verhagen, L., Dijkerman, H. C., Medendorp, W. P., & Toni, I. (2013). Hierarchical organization of parietofrontal circuits during goal-directed action. Journal of Neuroscience, 33(15), 6492–6503.PubMedGoogle Scholar
  167. Walker, A., & Leakey, R. E. (Eds.). (1993). The Nariokotome Homo erectus skeleton, Cambridge: Harvard University Press.Google Scholar
  168. Wang, J., & Sainburg, R. L. (2007). The dominant and nondominant arms are specialized for stabilizing different features of task performance. Experimental Brain Research, 178(4), 565–570.PubMedGoogle Scholar
  169. White, M. J. (1998). Twisted ovate bifaces in the British Lower Palaeolithic: Some observations and implications. Oxbow Monograph, 98–104.Google Scholar
  170. Whitwell, R. L., Striemer, C. L., Nicolle, D. A., & Goodale, M. (2011). Grasping the non-conscious: Preserved grip scaling to unseen objects for immediate but not delayed grasping following a unilateral lesion to primary visual cortex. Vision Research, 51(8), 908–924.PubMedGoogle Scholar
  171. Woodworth, R. S. (1899). Accuracy of voluntary movement. The Psychological Review: Monograph Supplements, 3(3), i.Google Scholar
  172. Ziegler, W. (2008). Apraxia of speech. Handbook of Clinical Neurology, 88, 269–285.PubMedGoogle Scholar

Copyright information

© The Psychonomic Society, Inc. 2019

Authors and Affiliations

  1. 1.PsychologyUniversity of British ColumbiaVancouverCanada
  2. 2.Department of Kinesiology and Physical EducationUniversity of LethbridgeLethbridgeCanada

Personalised recommendations