Advertisement

Attention, Perception, & Psychophysics

, Volume 81, Issue 7, pp 2155–2170 | Cite as

Momentum-like effects and the dynamics of perception, cognition, and action

  • Timothy L. HubbardEmail author
Time for Action: Reaching for a Better Understanding of the Dynamics of Cognition
  • 152 Downloads

Abstract

In a momentum-like effect, the likely future state of a current action or process is extrapolated. Momentum-like effects have been suggested to reflect dynamic processes, but such effects have not often been discussed in the broader literature on dynamic approaches to perception, cognition, and action. Several momentum-like effects are briefly described, and attempts to formulate dynamic theories of such effects are considered. Issues regarding dynamic representation that are relevant for theories of momentum-like effects (whether contingencies are invariant, stochastic, or arbitrary; bridging gaps between perception and action and between action and reinforcement; adaptiveness of such effects; influences of an observer’s knowledge, beliefs, and expectations; relationship of momentum-like effects to naïve physics and perception of causality) are discussed. Issues highlighted by a consideration of momentum-like effects relevant for dynamic approaches to other phenomena (multiple meanings and senses of “dynamic,” different meanings and connotations of “continuation” and “extrapolation,” perceptual inference of subjective or objective consequences, importance of time scale and temporal information, importance of the computational theory level, momentum-like effects as an example of predictive processing) are also discussed. Momentum-like effects provide examples of relatively simple dynamic processes that reveal and highlight issues relevant for study of dynamic approaches in a wide range of perceptual, cognitive, and action phenomena.

Keywords

Perception and action Momentum-Like effect Cognitive dynamics Predictive processing Anticipatory representation 

Notes

References

  1. Ashida, H. (2004). Action-specific extrapolation of target motion in human visual system. Neuropsychologia, 42, 1515-1524.PubMedGoogle Scholar
  2. Bartlett, F. C. (1932). Remembering: A study in experimental and social psychology. Cambridge: Cambridge University Press.Google Scholar
  3. Bendixen, A., SanMiguel, I., & Schröger, E. (2012). Early electrophysiological indicators for predictive processing in audition. International Journal of Psychophysiology, 83, 120-131.PubMedGoogle Scholar
  4. Blättler, C., Ferrari, V., Didierjean, A., & Marmèche, E. (2011). Representational momentum in aviation. Journal of Experimental Psychology: Human Perception and Performance, 37, 1569-1577.PubMedGoogle Scholar
  5. Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences, 36(3), 181-204.PubMedGoogle Scholar
  6. Cohen, S. L., Riley, D. S., & Weigle, P. A. (1993). Tests of behavior momentum in simple and multiple schedules with rats and pigeons. Journal of the Experimental Analysis of Behavior, 60(2), 255-291.PubMedPubMedCentralGoogle Scholar
  7. Cornelius, A. E., Silva, J. M., III, Conroy, D. E., & Petersen, G. (1997). The projected performance model: Relating cognitive and performance antecedents of psychological momentum. Perceptual and Motor Skills, 84, 475-485.Google Scholar
  8. de-Wit, L., Machilsen, B., & Putzeys, T. (2010). Predictive coding and the neural response to predictable stimuli. The Journal of Neuroscience, 30(26), 8702-8703.PubMedPubMedCentralGoogle Scholar
  9. Dube, W. V., Ahearn, W. H., Lionello-Denolf, K., & McIlvane, W. J. (2009). Behavioral momentum: Translational research in intellectual and developmental disabilities. The Behavior Analyst Today, 10, 238-253.PubMedPubMedCentralGoogle Scholar
  10. Finke, R. A., & Freyd, J. J. (1989). Mental extrapolation and cognitive penetrability: Reply to Ranney and proposals for evaluative criteria. Journal of Experimental Psychology: General, 118, 403-408.Google Scholar
  11. Fodor, J. R. (1983). The modularity of mind. Cambridge: MIT Press/Bradford Books.Google Scholar
  12. Freyd, J. J. (1987). Dynamic mental representations. Psychological Review, 94, 427-438.PubMedGoogle Scholar
  13. Freyd, J. J., & Finke, R. A. (1984). Representational momentum. Journal of Experimental Psychology: Learning, Memory, and Cognition, 10, 126-132.Google Scholar
  14. Freyd, J. J., & Jones, K. T. (1994). Representational momentum for a spiral path. Journal of Experimental Psychology: Learning, Memory, and Cognition, 20, 968-976.PubMedGoogle Scholar
  15. Friston, K. (2003). Learning and inference in the brain. Neural Networks, 16, 1325-1352.PubMedGoogle Scholar
  16. Friston, K. (2005). A theory of cortical responses.Philosophical Transactions of the Royal Society B: Biological Science, 360, 815-836.Google Scholar
  17. Friston, K. (2010). The free-energy principle: A unified brain theory? Nature Reviews Neuroscience, 11(2), 127-138.PubMedGoogle Scholar
  18. Futterweit, L. R., & Beilin, H. (1994). Recognition memory for movement in photographs: A developmental study. Journal of Experimental Child Psychology, 57, 163-179.PubMedGoogle Scholar
  19. Gernigon, C., Briki, W., & Eykens, K. (2010). The dynamics of psychological momentum in sport: The role of ongoing history of performance patterns. Journal of Sport & Exercise Psychology, 32, 377-400.Google Scholar
  20. Gilovich, T., Vallone, R., & Tversky, A. (1985). The hot hand in basketball: On the misperception of random sequences. Cognitive Psychology, 17, 295-314.Google Scholar
  21. Graesser, A. C., & Nakamura, G. V. (1982). The impact of a schema on comprehension and memory. Psychology of Learning and Motivation, 16, 59-109.Google Scholar
  22. Gray, R., & Thornton, I. M. (2001). Exploring the link between time to collision and representational momentum. Perception, 30, 1007-1022.PubMedGoogle Scholar
  23. Grinblatt, M. & Han, B. (2005). Prospect theory, mental accounting, and momentum. Journal of Financial Economics, 78, 311-339.Google Scholar
  24. Haselton, M. G., Bryant, G. A., Wilke, A., Frederick, D. A., Galperin, A., Frankenhuis, W. E., & Moore, T. (2009). Adaptive rationality: An evolutionary perspective on cognitive bias. Social Cognition, 27, 733-763.Google Scholar
  25. Haselton, M. G., & Nettle, D. (2006). The paranoid optimist: An integrative model of cognitive biases. Personality and Social Psychology Review, 10, 47-66.Google Scholar
  26. Hayes, A. E., & Freyd, J. J. (2002). Representational momentum when attention is divided. Visual Cognition, 9, 8-27.Google Scholar
  27. Hegarty, M. (2004). Mechanical reasoning by mental simulation. Trends in Cognitive Sciences, 8, 280-285.PubMedGoogle Scholar
  28. Helmholtz, H. (1860). Treatise on physiological optics, Volume 3. (J. P. C. Southhall, translation 1962). New York: Dover.Google Scholar
  29. Höffler, T. N., & Schwartz, R. N. (2011). Effects of pacing and cognitive style across dynamic and non-dynamic representations. Computers & Education, 57(2), 1716-1726.Google Scholar
  30. Hohwy, J. (2007). Functional integration and the mind. Synthese, 159, 315-328.Google Scholar
  31. Hosoya, T., Baccus, S. A., & Meister, M. (2005). Dynamic predictive coding by the retina. Nature, 436(7047), 71-77.Google Scholar
  32. Hubbard, T. L. (1994). Judged displacement: A modular process? American Journal of Psychology, 107, 359-373.Google Scholar
  33. Hubbard, T. L. (1995a). Cognitive representation of motion: Evidence for friction and gravity analogues. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21, 241-254.PubMedGoogle Scholar
  34. Hubbard, T. L. (1995b). Environmental invariants in the representation of motion: Implied dynamics and representational momentum, gravity, friction, and centripetal force. Psychonomic Bulletin & Review, 2, 322-338.Google Scholar
  35. Hubbard, T. L. (1996). Representational momentum, centripetal force, and curvilinear impetus. Journal of Experimental Psychology: Learning, Memory, and Cognition, 22, 1049-1060.PubMedGoogle Scholar
  36. Hubbard, T. L. (1997). Target size and displacement along the axis of implied gravitational attraction: Effects of implied weight and evidence of representational gravity. Journal of Experimental Psychology: Learning, Memory, and Cognition, 23, 1484-1493.Google Scholar
  37. Hubbard, T. L. (2004). The perception of causality: Insights from Michotte’s launching effect, naive impetus theory, and representational momentum. In A. M. Oliveira, M. P. Teixeira, G. F. Borges, & M. J. Ferro (Eds.), Fechner Day 2004 (pp. 116-121). Coimbra: The International Society for Psychophysics.Google Scholar
  38. Hubbard, T. L. (2005). Representational momentum and related displacements in spatial memory: A review of the findings. Psychonomic Bulletin & Review, 12, 822-851.Google Scholar
  39. Hubbard, T. L. (2006a). Bridging the gap: Possible roles and contributions of representational momentum. Psicologica, 27, 1-34.Google Scholar
  40. Hubbard, T. L. (2006b). Computational theory and cognition in representational momentum and related types of displacement: A reply to Kerzel. Psychonomic Bulletin & Review, 13, 174-177.Google Scholar
  41. Hubbard, T. L. (2010). Approaches to representational momentum: Theories and models. In R. Nijhawan, & B. Khurana (Eds.), Space and time in perception and action (pp. 338-365). Cambridge: Cambridge University Press.Google Scholar
  42. Hubbard, T. L. (2013a). Launching, entraining, and representational momentum: Evidence consistent with an impetus heuristic in perception of causality. Axiomathes, 23, 633-643.Google Scholar
  43. Hubbard, T. L. (2013b). Phenomenal causality I: Varieties and variables. Axiomathes, 23, 1-42.Google Scholar
  44. Hubbard, T. L. (2013c). Phenomenal causality II: Integration and implication. Axiomathes, 23, 485-524.Google Scholar
  45. Hubbard, T. L. (2014). Forms of momentum across space: Representational, operational, and attentional. Psychonomic Bulletin & Review, 21, 1371-1403.Google Scholar
  46. Hubbard, T. L. (2015a). Forms of momentum across time: Behavioral and psychological. Journal of Mind and Behavior, 36, 47-82.Google Scholar
  47. Hubbard, T. L. (2015b). The varieties of momentum-like experience. Psychological Bulletin, 141, 1081-1119.PubMedGoogle Scholar
  48. Hubbard, T. L. (2017a). Momentum in music: Musical succession as physical motion. Psychomusicology: Music, Mind, and Brain, 27, 14-30.Google Scholar
  49. Hubbard, T. L. (2017b). Toward a general theory of momentum-like effects. Behavioural Processes, 141, 50-66.PubMedGoogle Scholar
  50. Hubbard, T. L. (2018). Influences on representational momentum. In T. L. Hubbard (Ed.). Spatial biases in perception and cognition (pp. 121-138). New York: Cambridge University Press.Google Scholar
  51. Hubbard, T. L. (2019). Representational gravity: Empirical findings and theoretical implications. Manuscript submitted for publication.Google Scholar
  52. Hubbard, T. L., & Bharucha, J. J. (1988). Judged displacement in apparent vertical and horizontal motion. Perception & Psychophysics, 44, 211-221.Google Scholar
  53. Hubbard, T. L., & Lange, M. (2010). Prior probabilities and representational momentum. Visual Cognition, 18, 1063-1087.Google Scholar
  54. Iso-Ahola, S. E., & Dotson, C. O. (2014). Psychological momentum: Why success breeds success. Review of General Psychology, 18, 19-33.Google Scholar
  55. Iso-Ahola, S. E., & Dotson, C. O. (2016). Psychological momentum -- A key to continued success. Frontiers in Psychology, 7,Article ID 1328.Google Scholar
  56. Iso-Ahola, S. E., & Mobily, K. (1980). “Psychological momentum”: A phenomenon and an empirical (unobtrusive) validation of its influence in a competitive sport tournament. Psychological Reports, 46, 391-401.Google Scholar
  57. Johnson, M. L., & Larson, S. (2003). “Something in the way she moves” - Metaphors of musical motion. Metaphor and Symbol, 18, 63-84.Google Scholar
  58. Johnson-Laird, P. N. (1983). Mental models. New York: Cambridge University Press.Google Scholar
  59. Johnston, H. M., & Jones, M. R. (2006). Higher order pattern structure influences auditory representational momentum. Journal of Experimental Psychology: Human Perception and Performance, 32, 2-17.PubMedGoogle Scholar
  60. Jones, M. R. (1976). Time, our lost dimension: Toward a new theory of perception, attention, and memory. Psychological Review, 83(5), 323-355.PubMedGoogle Scholar
  61. Jones, M. R., & Boltz, M. (1989). Dynamic attending and responses to time. Psychological Review, 96(3), 459-491.PubMedGoogle Scholar
  62. Jordan, J. S. (2013). The wild ways of conscious will: What we do, how we do it, and why it has meaning. Frontiers in Psychology, 4, 574.PubMedPubMedCentralGoogle Scholar
  63. Jordan, J. S., Cialdella, V., Schloesser, D S., & Bai, J. (2018). Forms of bias in cognitive science: Moving beyond perception, action, and cognition. In T. L. Hubbard (Ed.). Spatial biases in perception and cognition (pp. 350-365). New York: Cambridge University Press.Google Scholar
  64. Jörges, B., & López-Moliner, J. (2017). Gravity as a strong prior: Implications for perception and action. Frontiers in Human Neuroscience. 11:203. doi:  https://doi.org/10.3389/fnhum.2017.00203 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Juarrero, A. (2002). Dynamics in action: Intentional behavior as a complex system. Cambridge: MIT Press.Google Scholar
  66. Kaiser, M.K., Proffitt, D.R., Whelan, S.M. & Hecht, H. (1992). Influence of animation on dynamical judgments. Journal of Experimental Psychology: Human Perception and Performance, 18, 669-690.Google Scholar
  67. Kawato, M. (1999). Internal models for motor control and trajectory planning. Current Opinion in Neurobiology, 9, 718-727.PubMedGoogle Scholar
  68. Kelly, M. H., & Freyd, J. J. (1987). Explorations of representational momentum. Cognitive Psychology, 19(3), 369-401.PubMedGoogle Scholar
  69. Kelso, J. A. S. (1995). Dynamic patterns: The self-organization of brain and behavior. Cambridge: MIT Press/Bradford Books.Google Scholar
  70. Kerick, S. E., Iso-Ahola, S. E., & Hatfield, B. D. (2000). Psychological momentum in target shooting: Cortical, cognitive-affective, and behavioral responses. Journal of Sport & Exercise Psychology, 22, 1-20.Google Scholar
  71. Kerzel, D. (2002). A matter of design: No representational momentum without predictability. Visual Cognition, 9, 66-80.Google Scholar
  72. Kerzel, D., Jordan, J. S., & Müsseler, J. (2001). The role of perception in the mislocalization of the final position of a moving target. Journal of Experimental Psychology: Human Perception and Performance, 27, 829-840.PubMedGoogle Scholar
  73. Knops, A., Viarouge, A., & Dehaene, S. (2009). Dynamic representations underlying symbolic and nonsymbolic calculation: Evidence from the operational momentum effect. Attention, Perception, & Psychophysics, 71, 803-821.Google Scholar
  74. Kozhevnikov, M., & Hegarty, M. (2001). Impetus beliefs as default heuristics: Dissociation between explicit and implicit knowledge about motion. Psychonomic Bulletin & Review, 8, 439-453.Google Scholar
  75. Kubovy, M. (1983). Mental imagery majestically transforming cognitive psychology (Review of R. N. Shepard & L. Cooper, Mental Images and their Transformations). Contemporary Psychology, 28, 661-663.Google Scholar
  76. Kubovy, M., & Epstein, W. (2001). Internalization: A metaphor we can live without. Behavioral and Brain Sciences, 24, 618-625.PubMedGoogle Scholar
  77. Larson, S. (2004). Musical forces and melodic expectations: Comparing computer models and experimental results. Music Perception, 21, 457-498.Google Scholar
  78. Larson, S. (2012). Musical forces: Motion, metaphor, and meaning in music. Bloomington: Indiana University Press.Google Scholar
  79. Lee, T. S., & Mumford, D. (2003). Hierarchical Bayesian inference in the visual cortex. Journal of the Optical Society of America, A, Optics, Image Science & Vision, 20(7), 1434-1448.Google Scholar
  80. Lindemann, O., & Tira, M. D. (2011). Operational momentum in numerosity production judgments of multi-digit number problems. The Journal of Psychology, 219, 50-57.Google Scholar
  81. Mace, F. C., Lalli, J. S., Shea, M. C., Lalli, E. P., West, B. J., Roberts, M., & Nevin, J. A. (1990). The momentum of human behavior in a natural setting. Journal of the Experimental Analysis of Behavior, 54, 163-172.PubMedPubMedCentralGoogle Scholar
  82. Markman, K. D., & Guenther, C. L. (2007). Psychological momentum: Intuitive physics and naive beliefs. Personality and Social Psychology Bulletin, 33, 800-812.PubMedGoogle Scholar
  83. Marr, D. (1982). Vision. New York: Freeman.Google Scholar
  84. McBeath, M. K. (2018). Natural regularities and coupled predictive perceptual and cognitive biases: Why we evolved to systematically experience spatial illusions. In T. L. Hubbard (Ed.). Spatial biases in perception and cognition (pp. 276-294). New York: Cambridge University Press.Google Scholar
  85. McCloskey, M. (1983). Naive theories of motion. In D. Gentner & A. L. Stevens (Eds.). Mental models (pp. 299-324). Hillsdale, NJ: Erlbaum.Google Scholar
  86. McCrink, K., Dehaene, S., & Dehaene-Lambertz, G. (2007). Moving along the number line: Operational momentum in nonsymbolic arithmetic. Perception & Psychophysics, 69, 1324-1333.Google Scholar
  87. McCrink, K., & Hubbard, T. L. (2017). Dividing attention increases operational momentum. Journal of Numerical Cognition, 3, 230-245.Google Scholar
  88. McCrink, K., & Wynn, K. (2009). Operational momentum in large-number addition and subtraction by 9-month-olds. Journal of Experimental Child Psychology, 103, 400-408.PubMedGoogle Scholar
  89. Miller, G. (1962). Psychology: The Science of Mental Life. New York: Harper & Row Publishers.Google Scholar
  90. Munger, M. P., Dellinger, M. C., Lloyd, T. G., Johnson-Reid, K., Tonelli, N. J., Wolf, K., & Scott, J. M. (2006). Representational momentum in scenes: Learning spatial layout. Memory & Cognition, 34, 1557-1568.Google Scholar
  91. Munger, M. P., Solberg, J. L., & Horrocks, K. K. (1999). The relationship between mental rotation and representational momentum. Journal of Experimental Psychology: Learning, Memory, and Cognition, 25, 1557-1568.PubMedGoogle Scholar
  92. Neiworth, J. J., & Rilling, M. E. (1987). A method for studying imagery in animals. Journal of Experimental Psychology: Animal Behavior Processes, 13, 203-214.Google Scholar
  93. Neuhoff, J G. (2018). Adaptive biases in visual and auditory looming perception. In T. L. Hubbard (Ed.). Spatial biases in perception and cognition (pp. 180-190). New York: Cambridge University Press.Google Scholar
  94. Nevin, J. A. (1988). Behavioral momentum and the partial reinforcement effect. Psychological Bulletin, 103, 44-56.Google Scholar
  95. Nevin, J. A. (1992). An integrative model for the study of behavioral momentum. Journal of the Experimental Analysis of Behavior, 57, 301-316.PubMedPubMedCentralGoogle Scholar
  96. Nevin, J. A. (2012). Resistance to extinction and behavioral momentum. Behavioural Processes, 90, 89-97.PubMedPubMedCentralGoogle Scholar
  97. Nevin, J.A. (2015). Behavioral Momentum: A Scientific Metaphor. CreateSpaceIndependent Publishing, San Bernadino.Google Scholar
  98. Nevin, J. A., & Grace, R. C. (2000). Behavioral momentum and the law of effect. Behavioral and Brain Sciences, 23, 73-90.PubMedGoogle Scholar
  99. Nevin, J. A., Mandell, C., & Atak, J. R. (1983). The analysis of behavioral momentum. Journal of the Experimental Analysis of Behavior, 39, 49-59.PubMedPubMedCentralGoogle Scholar
  100. Nevin, J. A., & Shahan, T. A. (2011). Behavioral momentum theory: Equations and applications. Journal of Applied Behavior Analysis, 44, 877-895.PubMedPubMedCentralGoogle Scholar
  101. Nevin, J. A., Tota, M. E., Torquato, R. D., & Shull, R. L. (1990). Alternative reinforcement increases resistance to change: Pavlovian or operant contingencies? Journal of the Experimental Analysis of Behavior, 53, 359-379.PubMedPubMedCentralGoogle Scholar
  102. Parry-Cruwys, D. E., Neal, C. M., Ahearn, W. H., Wheeler, E. E., Premchander, R., Loeb, M. B., & Dube, W. V. (2011). Resistance to disruption in a classroom setting. Journal of Applied Behavior Analysis, 44, 363-367.PubMedPubMedCentralGoogle Scholar
  103. Philbeck, J. W., & Witt, J. K. (2015). Action-specific influences on perception and postperceptual processes: Present controversies and future directions. Psychological Bulletin, 141(6), 1120-1144.PubMedPubMedCentralGoogle Scholar
  104. Pickering, M. J., & Clark, A. (2014). Getting ahead: Forward models and their place in cognitive architecture. Trends in Cognitive Sciences, 18, 451-456.PubMedGoogle Scholar
  105. Pinhas, M., & Fischer, M. H. (2008). Mental movements without magnitude? A study of spatial biases in symbolic arithmetic. Cognition, 109, 408-415.PubMedGoogle Scholar
  106. Podlesnik, C. A., & Shahan, T. A. (2009). Behavioral momentum and relapse of extinguished operant responding. Learning & Behavior, 37, 357-364.Google Scholar
  107. Podlesnik, C. A., & Shahan, T. A. (2010). Extinction, relapse, and behavioral momentum. Behavioural Processes, 84, 400-411.PubMedPubMedCentralGoogle Scholar
  108. Port, R. F., & van Gelder, T. (1995). Mind as motion: Explorations in the dynamics of cognition. Cambridge: MIT Press.Google Scholar
  109. Pratt, J., Spalek, T. M., & Bradshaw, F. (1999). The time to detect targets at inhibited and noninhibited locations: Preliminary evidence for attentional momentum. Journal of Experimental Psychology: Human Perception and Performance, 25, 730-746.Google Scholar
  110. Rao, R. P. N., & Ballard, D. H. (1999). Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive-field effects. Nature Neuroscience, 2(1), 79-87.PubMedGoogle Scholar
  111. Reed, C. L., & Vinson, N. G. (1996). Conceptual effects on representational momentum. Journal of Experimental Psychology: Human Perception and Performance, 22, 839-850.PubMedGoogle Scholar
  112. Rock, I. (1983). The logic of perception. Cambridge: MIT Press.Google Scholar
  113. Roediger, H. L. III. (1996). Memory illusions. Journal of Memory and Language, 35(2), 76-100.Google Scholar
  114. Ruppel, S. E., Fleming, C. N., & Hubbard, T. L. (2009). Representational momentum is not (totally) impervious to error feedback. Canadian Journal of Experimental Psychology, 63, 49-58.PubMedGoogle Scholar
  115. Schöner, G., Spencer, J. P., DFT Research Group. (2016) Dynamic thinking: A primer on dynamic field theory. New York: Oxford University Press.Google Scholar
  116. Shaw, J. M., Dzewaltowski, D. A., & McElroy, M. (1992). Self-efficacy and causal attributions as mediators of perceptions of psychological momentum. Journal of Sport & Exercise Psychology, 14, 134-147.Google Scholar
  117. Shepard, R. N. (1975). Form, formation, and transformation of internal representations. In R. L. Solso (Ed.), Information processing and cognition: The Loyola Symposium (pp. 87–122). Hillsdale: Erlbaum.Google Scholar
  118. Shepard, R. N. (1981). Psychophysical complementarity. In M. Kubovy & J. R. Pomerantz (Eds.), Perceptual organization (pp. 279–341). Hillsdale: Erlbaum.Google Scholar
  119. Tabatabaeian, M. (2018). Beyond the here and now: Experimental studies in how action dynamics reflect complex cognitive processes (Order No. AAI10621530). Available from PsycINFO. (2070848997; 2018-26097-076). Retrieved from http://login.ezproxy1.lib.asu.edu/login?url=https://search-proquest-com.ezproxy1.lib.asu.edu/docview/2070848997?accountid=4485
  120. Taylor, J., & Demick, A. (1994). A multidimensional model of momentum in sports. Journal of Applied Sport Psychology, 6, 51-70.Google Scholar
  121. Thelen, E., & Smith, L. B. (1994). A dynamic systems approach to the development of cognition and action. Cambridge:MIT Press.Google Scholar
  122. Vallerand, R. J., Colavecchio, P. G., & Pelletier, L. G. (1988). Psychological momentum and performance inferences: A preliminary test of the antecedents-consequences psychological momentum model. Journal of Sport & Exercise Psychology, 10, 92-108.Google Scholar
  123. van Kesteren, M. T. R., Rijpkema, M., Ruiter, D. J., & Fernández, G. (2013). Consolidation Differentially Modulates Schema Effects on Memory for Items and Associations. PLoS ONE 8(2): e56155.  https://doi.org/10.1371/journal.pone.0056155 PubMedPubMedCentralGoogle Scholar
  124. Verfaillie, K., & d’Ydewalle, G. (1991). Representational momentum and event course anticipation in the perception of implied periodical motions. Journal of Experimental Psychology: Learning, Memory, and Cognition, 17, 302-313.PubMedGoogle Scholar
  125. Weiss, Y., Simoncelli, E., & Adelson, E. H. (2002). Motion illusions as optimal percepts. Nature Neuroscience, 5(6), 598-604.PubMedGoogle Scholar
  126. Witt, J. K. (2018). Spatial biases from action. In T. L. Hubbard (Ed.). Spatial biases in perception and cognition (pp. 307-323). New York: Cambridge University Press.Google Scholar
  127. Witt, J. K., & Riley, M. A. (2014). Discovering your inner Gibson: Reconciling action-specific and ecological approaches to perception–action. Psychonomic Bulletin & Review, 21(6), 1353-1370.Google Scholar
  128. Zago, M. (2018). Perceptual and motor biases in reference to gravity. In T. L. Hubbard (Ed.). Spatial biases in perception and cognition (pp. 156-166). New York: Cambridge University Press.Google Scholar

Copyright information

© The Psychonomic Society, Inc. 2019

Authors and Affiliations

  1. 1.Department of PsychologyArizona State UniversityTempeUSA

Personalised recommendations