Object correspondence: Using perceived causality to infer how the visual system knows what went where

  • Cathleen M. MooreEmail author
  • Teresa Stephens
  • Elisabeth Hein
40 Years of Feature Integration: Special Issue in Memory of Anne Treisman


Anne Treisman and colleagues developed an influential theoretical framework surrounding the construct of “object files” as a means of understanding the functional need for an episodic representation of objects as they move, change, disappear, and reappear from view (Kahneman, Treisman, & Gibbs, Cognitive Psychology, 24, 175–219, 1992; Treisman, The Quarterly Journal of Experimental Psychology, 40, 201–237, 1988). Within that framework, object files are defined through the process of object correspondence, whereby stimuli are associated with and represented as later instantiations of existing object representations and are used to selectively update those representations. A central assertion of the object file framework is that object correspondence is established on the basis of spatiotemporal continuity, without regard to feature information. We tested this assertion by investigating whether feature information, separate from spatiotemporal information, can determine how object correspondence is resolved. We used the perception of causality in simple dynamic displays, which provides a means of inferring how object correspondence is resolved. We found that, contrary to the spatiotemporal dominance assertion, feature information is used to resolve object correspondence. We suggest that the object-file framework be extended to reflect the importance of both feature and spatiotemporal information in establishing and maintaining episodic object representations.


perceptual organization object-based attention Motion: *Other 


Supplementary material

13414_2019_1763_MOESM1_ESM.mp4 (81 kb)
ESM 1 (MP4 80 kb)
13414_2019_1763_MOESM2_ESM.mp4 (60 kb)
ESM 2 (MP4 59 kb)
13414_2019_1763_MOESM3_ESM.mp4 (66 kb)
ESM 3 (MP4 65 kb)

(MP4 21 kb)


  1. Adelson, E. H., & Bergen, J. R. (1985). Spatiotemporal energy models for the perception of motion. Journal of the Optical Society of America a—Optics Image Science and Vision, 2, 284–299.CrossRefGoogle Scholar
  2. Bae, G. Y., & Flombaum, J. I. (2011). Amodal causal capture in the tunnel effect. Perception, 40, 74–90.CrossRefGoogle Scholar
  3. Bertenthal, B. I., Banton, T., & Bradbury, A. (1993). Directional bias in the perception of translating patterns. Perception, 22, 193–207.CrossRefGoogle Scholar
  4. Brainard, D. H. (1997). The Psychophysics Toolbox. Spatial Vision, 10, 433–436.CrossRefGoogle Scholar
  5. Burt, P., & Sperling, G. (1981). Time, distance, and feature trade-offs in visual apparent motion. Psychological Review, 88, 171–195.CrossRefGoogle Scholar
  6. Caplovitz, G. P., Shapiro, A. G., & Stroud, S. (2011). The maintenance and disambiguation of object representations depend upon feature contrast within and between objects. Journal of Vision, 11(14), 1, 1–14. CrossRefPubMedGoogle Scholar
  7. Cavanagh, P., Arguin, M., & von Grünau, M. (1989). Interattribute apparent motion. Vision Research, 29, 1197–1204.CrossRefGoogle Scholar
  8. Cohen, M. A., Pinto, Y., Howe, P. D. L., & Horowitz, T. S. (2011). The what–where trade-off in multiple-identity tracking. Attention, Perception, & Psychophysics, 73, 1422–1434.CrossRefGoogle Scholar
  9. Cousineau, D. (2005). Confidence intervals in within-subject designs: A simpler solution to Loftus and Masson’s method. Tutorials in Quantitative Methods for Psychology, 1, 42–45.CrossRefGoogle Scholar
  10. Feldman, J., & Tremoulet, P. D. (2006). Individuation of visual objects over time. Cognition, 99, 131–165.CrossRefGoogle Scholar
  11. Flombaum, J. I., Scholl, B. J., & Santos, L. R. (2009). Spatiotemporal priority as a fundamental principle of object persistence. In B. Hood & L. Santos (Eds.), The origins of object knowledge (pp. 135–164). Oxford: Oxford University Press.CrossRefGoogle Scholar
  12. Gepshtein, S., & Kubovy, M. (2000). The emergence of visual objects in space-time. Proceedings of the National Academy of Sciences, 97, 8186–8191.CrossRefGoogle Scholar
  13. Green, M. (1986). What determines correspondence strength in apparent motion? Vision Research, 26, 599–607.CrossRefGoogle Scholar
  14. Hein, E., & Cavanagh, P. (2012). Motion correspondence in the Ternus display shows feature bias in spatiotopic coordinates. Journal of Vision, 12, (7), 16, 1–14. CrossRefPubMedGoogle Scholar
  15. Hein, E., & Moore, C. M. (2012). Spatio-temporal priority revisited: The role of feature identity and similarity for object-correspondence in apparent motion. Journal of Experimental Psychology: Human Perception and Performance, 38, 975–988.PubMedGoogle Scholar
  16. Hein, E., & Moore, C. M. (2014). Evidence of scene-based motion correspondence, Attention, Perception, & Psychophysics, 78, 793–804.CrossRefGoogle Scholar
  17. Hollingworth, A., & Franconeri, S. L. (2009). The role of surface features in establishing object correspondence. Cognition, 113, 150–166.CrossRefGoogle Scholar
  18. Horowitz, T. S., Klieger, S. B., Fencsik, D. E., Yang, K. K., Alvarez, G. A., & Wolfe, J. M. (2007). Tracking unique objects. Perception & Psychophysics, 69, 172–184.CrossRefGoogle Scholar
  19. Julesz, B. (1971). Foundations of cyclopean perception. Chicago, IL: University of Chicago Press.Google Scholar
  20. Kahneman, D., Treisman, A., & Gibbs, B. (1992). The reviewing of object files: Object-specific integration of information. Cognitive Psychology, 24, 175–219.CrossRefGoogle Scholar
  21. Kanizsa, G. (1979). Organization in vision: Essays on Gestalt Perception. New York, NY: Praeger.Google Scholar
  22. Kleiner, M., Brainard, D. H., & Pelli, D. G. (2007). What’s new in Psychtoolbox-3? Perception, 36(1), 1–16. CrossRefGoogle Scholar
  23. Kolers, P. A. (1972). Aspects of motion perception. Oxford, UK: Pergamon Press.Google Scholar
  24. Kolers, P. A., & Pomerantz, J. R. (1971). Figural change in apparent motion. Journal of Experimental Psychology, 87(1), 99–108.CrossRefGoogle Scholar
  25. Kolers, P., & von Grünau, M. (1976). Shape and color in apparent motion. Vision Research, 16(4), 329–335.CrossRefGoogle Scholar
  26. Korte, A. (1915). Kinematoskopische Untersuchungen. Zeitschrift für Psychologie, 72, 194-296.Google Scholar
  27. Kramer, P., & Yantis, S. (1997). Perceptual grouping in space and time: evidence from the Ternus display. Perception & Psychophysics, 59, 87-99.CrossRefGoogle Scholar
  28. Makovski, T., & Jiang, Y. V. (2009). Feature binding in attentive tracking of distinct objects. Visual Cognition, 17, 180-194.CrossRefGoogle Scholar
  29. Michotte, A. (1963). The perception of causality. [T.R. Miles & E. Miles, Trans.]. London, UK: Methuen. (Original work published 1932)Google Scholar
  30. Mitroff, S.R., & Alvarez, G.A. (2007). Space and time, not surface features, underlie object persistence. Psychonomic Bulletin & Review, 14, 1199–1204.CrossRefGoogle Scholar
  31. Mitroff, S. R., Scholl, B. J., & Wynn, K. (2005). The relationship between object files and conscious perception. Cognition, 96, 67–92.CrossRefGoogle Scholar
  32. Moore, C. M., & Enns, J. T. (2004). Substitution masking and the flash-lag effect. Psychological Science, 15, 866–871.CrossRefGoogle Scholar
  33. Moore, C. M., Mordkoff, J. T., & Enns, J. T. (2007). Path of least persistence: Object status mediates visual updating. Vision Research, 47, 1624–1630.CrossRefGoogle Scholar
  34. Moore, C. M., Stephens, T., & Hein, E. (2010). Features, as well as space and time, guide object persistence. Psychonomic Bulletin & Review, 17, 731–736.CrossRefGoogle Scholar
  35. Mordkoff, J. T. (2019). A simple method for removing bias from a popular measure of standardized effect size: Adjusted partial eta squared (\( adj\ {\hat{\eta}}_p^2\Big) \). Advances in Methods and Practices in Psychological Science.Google Scholar
  36. Morey, R. D. (2008). Confidence intervals from normalized data: A correction to Cousineau (2005). Tutorials in Quantitative Methods for Psychology, 4, 61–64.CrossRefGoogle Scholar
  37. Navon, D. (1976). Irrelevance of figural identity for resolving ambiguities in apparent motion. Journal of Experimental Psychology, 2, 130–138.PubMedGoogle Scholar
  38. Neuhaus, W. (1930). Experimentelle Untersuchung der Scheinbewegung [Experimental investigations of apparent motion]. Archiv für die Gesamte Psychologie, 75, 315–458.Google Scholar
  39. Nishida, S., Ohtani, Y., & Ejima, Y. (1992). Inhibitory interaction in a split/fusion apparent motion: Lack of spatial frequency selectivity. Vision Research, 32, 1523–1534.CrossRefGoogle Scholar
  40. Odic, D., Roth, O., & Flombaum, J. (2012). The relationship between apparent motion and object files. Visual Cognition, 20, 1052–1081.CrossRefGoogle Scholar
  41. Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10, 437–442.CrossRefGoogle Scholar
  42. Petersik, J., & Rice, C. (2006). The evolution of explanations of a perceptual phenomenon: A case history using the Ternus effect. Perception, 35, 807–821.CrossRefGoogle Scholar
  43. Pikler, J. (1917). Sinnesphysiologische Untersuchungen [Physiological investigations of the senses]. Leipzig, Germany: J. A. Barth.Google Scholar
  44. Pylyshyn, Z. W. (1989). The role of location indexes in spatial perception: A sketch of the FINST spatial-index model. Cognition, 32, 65–97.CrossRefGoogle Scholar
  45. Pylyshyn, Z. W. (2001). Visual indexes, preconceptual objects, and situated vision. Cognition, 80, 127–158.CrossRefGoogle Scholar
  46. Scholl, B. J. (2007). Object persistence in philosophy and psychology. Mind & Language, 22(5), 563–591.CrossRefGoogle Scholar
  47. Scholl, B. J., & Nakayama, K. (2002). Causal capture: Contextual effects on the perception of collision events. Psychological Science, 13(6), 493–498.CrossRefGoogle Scholar
  48. Sekuler, A. B., & Bennett, P. J. (1996). Spatial phase differences can drive apparent motion. Perception & Psychophysics, 58, 174–190.CrossRefGoogle Scholar
  49. Shapiro, A. G., Caplovitz, G. P., & Dixon, E. L. (2014). Feature- and face-exchange illusions: new insights and applications for the study of the binding problem. Frontiers in Human Neuroscience, 1–6.
  50. Shechter, S., Hochstein, S., & Hillman, P. (1988). Shape similarity and distance disparity as apparent motion correspondence cues. Vision Research, 28, 1013–1021.CrossRefGoogle Scholar
  51. Stepper, M. Y., Moore, C. M., Rolke, B., & Hein, E. (2019a). The role of object history in establishing object correspondence. Manuscript submitted for publication.Google Scholar
  52. Stepper, M. Y., Rolke, B., & Hein, E. (2019b). How voluntary spatial attention influences feature biases in object correspondence. Manuscript submitted for publication.Google Scholar
  53. Sun, M. D., Zhang, X. M., Fan, L. X., & Hu, L. M. (2018). Hue distinctiveness overrides category in determining performance in multiple object tracking. Attention, Perception, & Psychophysics, 80, 374–386.CrossRefGoogle Scholar
  54. Tas, A. C., Dodd, M. D., & Hollingworth, A. (2012b). The role of surface feature continuity in object-based inhibition of return. Visual Cognition, 20, 29–47.CrossRefGoogle Scholar
  55. Tas, A. C., Moore, C. M., & Hollingworth, A. (2012a). An object-mediated updating account of insensitivity to transsaccadic change. Journal of Vision, 12(11), 18, 1–13.CrossRefGoogle Scholar
  56. Ternus, J. (1926). Experimentelle Untersuchungen über phänomenale Identität [Experimental investigations of phenomenal identity]. Psychologische Forschung, 7, 81–136. Translated to English in W. D. Ellis (Ed.), (1950). A sourcebook of gestalt psychology. New York, NY: Humanities Press.Google Scholar
  57. Treisman, A. (1988). Features and object: The Fourteenth Bartlett Memorial Lecture. The Quarterly Journal of Experimental Psychology, 40, 201–237.CrossRefGoogle Scholar
  58. Ullman, S. (1979). The interpretation of visual motion. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
  59. Werkhoven, P., Sperling, G., & Chubb, C. (1994). Perception of apparent motion between dissimilar gratings: Spatiotemporal properties. Vision Research, 34, 2741–2759.CrossRefGoogle Scholar
  60. Wertheimer, M. (1912). Experimentelle Studien über das Sehen von Bewegung [Experimental studies of the perception of motion]. Zeitschrift für Psychologie, 61, 161–265. Translated in part in T. Shipley (Ed.). (1961). Classics in Psychology. New York, NY: Philosophical Library.Google Scholar

Copyright information

© The Psychonomic Society, Inc. 2019

Authors and Affiliations

  • Cathleen M. Moore
    • 1
    Email author
  • Teresa Stephens
    • 2
  • Elisabeth Hein
    • 3
  1. 1.University of IowaIowa CityUSA
  2. 2.Harford Community CollegeBel AirUSA
  3. 3.University of TübingenTübingenGermany

Personalised recommendations