Feature-based guidance of attention during post-saccadic selection

  • Andrew HollingworthEmail author
  • Michi Matsukura


Current models of trans-saccadic perception propose that, after a saccade, the saccade target object must be localized among objects near the landing position. However, the nature of the attentional mechanisms supporting this process is currently under debate. In the present study, we tested whether surface properties of the saccade target object automatically bias post-saccadic selection using a variant of the visual search task. Participants executed a saccade to a shape-singleton target in a circular array. During this primary saccade, the array sometimes rotated so that the eyes landed between the target and an adjacent distractor, requiring gaze correction. In addition, each object in the array had an incidental color value. On Switch trials, the target and adjacent distractor switched colors. The accuracy and latency of gaze correction to the target (measures that provide a direct index of target localization) were compared with a control condition in which no color switch occurred (No-switch trials). Gaze correction to the target was substantially impaired in the Switch condition. This result was obtained even when participants had substantial incentive to avoid encoding the color of the saccade target. In addition, similar effects were observed when the roles of the two feature dimensions (color and shape) were reversed. The results indicate that saccade target features are automatically encoded before a saccade, are retained in visual working memory across the saccade, and instantiate a feature-based selection operation when the eyes land, biasing attention toward objects that match target features.


Eye movements Mechanisms, eye movements and visual attention Visual working memory Feature-based attention 


Author Notes

This research was supported by NIH grant R01EY017356.


  1. Aagten-Murphy, D., & Bays, P. M. (in press). Functions of memory across saccadic eye movements Current Topics in Behavioral Neurosciences. Berlin, Heidelberg: Springer.Google Scholar
  2. Becker, W. (1991). Saccades. In R. H. S. Carpenter (Ed.), Vision and visual dysfunction, Vol. 8: Eye movements (pp. 93-137). London: MacMillan.Google Scholar
  3. Becker, W., & Jürgens, R. (1979). An analysis of the saccadic system by means of double step stimuli. Vision Research, 19(9), 967-983. Google Scholar
  4. Born, S., Ansorge, U., & Kerzel, D. (2012). Feature-based effects in the coupling between attention and saccades. Journal of Vision, 12(11), 27–27.
  5. Bridgeman, B., Hendry, D., & Stark, L. (1975). Failure to detect displacement of the visual world during saccadic eye movements. Vision Research, 15(6), 719-722. Google Scholar
  6. Bridgeman, B., & Mayer, M. (1983). Failure to integrate visual information from successive fixations. Bulletin of the Psychonomic Society, 21(4), 285-286.Google Scholar
  7. Cavanagh, P., Hunt, A. R., Afraz, A., & Rolfs, M. (2010). Visual stability based on remapping of attention pointers. Trends in Cognitive Sciences, 14(4), 147-153. Google Scholar
  8. Currie, C. B., McConkie, G. W., Carlson-Radvansky, L. A., & Irwin, D. E. (2000). The role of the saccade target object in the perception of a visually stable world. Perception & Psychophysics, 62(4), 673-683. Google Scholar
  9. Demeyer, M., De Graef, P., Wagemans, J., & Verfaillie, K. (2010). Object form discontinuity facilitates displacement discrimination across saccades. Journal of Vision, 10(6), 17. Google Scholar
  10. Deubel, H. (2004). Localization of targets across saccades: Role of landmark objects. Visual Cognition, 11(2-3), 173-202. Google Scholar
  11. Deubel, H., Bridgeman, B., & Schneider, W. X. (1998). Immediate post-saccadic information mediates space constancy. Vision Research, 38(20), 3147-3159. Google Scholar
  12. Deubel, H., & Schneider, W. X. (1996). Saccade target selection and object recognition: Evidence for a common attentional mechanism. Vision Research, 36(12), 1827-1837. Google Scholar
  13. Deubel, H., Schneider, W. X., & Bridgeman, B. (1996). Post-saccadic target blanking prevents saccadic suppression of image displacement. Vision Research, 36(7), 985-996. Google Scholar
  14. Eymond, C., Cavanagh, P., & Collins, T. (2016). Feature-based attention across saccades and immediate post-saccadic selection. Attention, Perception & Psychophysics, 78(5), 1293-1301. Google Scholar
  15. Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39, 175–191. Google Scholar
  16. Foerster, R. M., & Schneider, W. X. (2018). Involuntary top-down control by search-irrelevant features: Visual working memory biases attention in an object-based manner. Cognition, 172, 37-45. Google Scholar
  17. Gao, T., Gao, Z., Li, J., Sun, Z., & Shen, M. (2011). The perceptual root of object-based storage: An interactive model of perception and visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 37(6), 1803-1823. Google Scholar
  18. Gysen, V., Verfaillie, K., & De Graef, P. (2002). Transsaccadic perception of translating objects: Effects of landmark objects and visual field position. Vision Research, 42(14), 1785-1796. Google Scholar
  19. Hein, E., & Cavanagh, P. (2012). Motion correspondence in the Ternus display shows feature bias in spatiotopic coordinates. Journal of Vision, 12(7).
  20. Herwig, A. (2015). Transsaccadic integration and perceptual continuity. Journal of Vision, 15(16), 7. Google Scholar
  21. Herwig, A., & Schneider, W. X. (2014). Predicting object features across saccades: Evidence from object recognition and visual search. Journal of Experimental Psychology: General, 143(5), 1903-1922. Google Scholar
  22. Higgins, E., & Rayner, K. (2015). Transsaccadic processing: Stability, integration, and the potential role of remapping. Attention, Perception, & Psychophysics, 77(1), 3-27. Google Scholar
  23. Hoffman, J. E., & Subramaniam, B. (1995). The role of visual attention in saccadic eye movements. Perception & Psychophysics, 57(6), 787-795. Google Scholar
  24. Hollingworth, A., & Franconeri, S. L. (2009). Object correspondence across brief occlusion is established on the basis of both spatiotemporal and surface feature cues. Cognition, 113(2), 150-166. Google Scholar
  25. Hollingworth, A., & Luck, S. J. (2009). The role of visual working memory (VWM) in the control of gaze during visual search. Attention, Perception, & Psychophysics, 71(4), 936-949. Google Scholar
  26. Hollingworth, A., Richard, A. M., & Luck, S. J. (2008). Understanding the function of visual short-term memory: Transsaccadic memory, object correspondence, and gaze correction. Journal of Experimental Psychology: General, 137(1), 163–181. Google Scholar
  27. Hunt, A. R., & Kingstone, A. (2003). Covert and overt voluntary attention: Linked or independent? Cognitive Brain Research, 18(1), 102-105. Google Scholar
  28. Hyun, J. S., Woodman, G. F., Vogel, E. K., Hollingworth, A., & Luck, S. J. (2009). The comparison of visual working memory representations with perceptual inputs. Journal of Experimental Psychology: Human Perception and Performance, 35(4), 1140-1160. Google Scholar
  29. Irwin, D. E. (1991). Information integration across saccadic eye movements. Cognitive Psychology, 23(3), 420-456. Google Scholar
  30. Irwin, D. E. (1992a). Memory for position and identity across eye movements. Journal of Experimental Psychology: Learning, Memory, and Cognition, 18(2), 307-317. Google Scholar
  31. Irwin, D. E. (1992b). Visual memory within and across fixations. In K. Rayner (Ed.), Eye movements and visual cognition: Scene perception and reading (pp. 146-165). New York: Springer-Verlag.Google Scholar
  32. Irwin, D. E., & Andrews, R. V. (1996). Integration and accumulation of information across saccadic eye movements. In T. Inui & J. L. McClelland (Eds.), Attention and performance XVI: Information integration in perception and communication (pp. 125-155). Cambridge, MA: MIT Press.Google Scholar
  33. Irwin, D. E., McConkie, G. W., Carlson-Radvansky, L. A., & Currie, C. (1994). A localist evaluation solution for visual stability across saccades. Behavioral and Brain Sciences, 17(2), 265-266. Google Scholar
  34. Irwin, D. E., Yantis, S., & Jonides, J. (1983). Evidence against visual integration across saccadic eye movements. Perception & Psychophysics, 34(1), 49-57. Google Scholar
  35. Jonides, J., Irwin, D. E., & Yantis, S. (1982). Integrating visual information from successive fixations. Science, 215(4529), 192-194. Google Scholar
  36. Jonikaitis, D., & Theeuwes, J. (2013). Dissociating oculomotor contributions to spatial and feature-based selection. Journal of Neurophysiology, 110(7), 1525-1534. Google Scholar
  37. Juan, C. H., Shorter-Jacobi, S. M., & Schall, J. D. (2004). Dissociation of spatial attention and saccade preparation. Proceedings of the National Academy of Sciences of the United States of America, 101(43), 15541-15544. Google Scholar
  38. Klein, R. M. (1980). Does oculomotor readiness mediate cognitive control of visual attention? In R. S. Nickerson (Ed.), Attention and performance VIII (pp. 259-276). Hillsdale, NJ: Erlbaum.Google Scholar
  39. Klein, R. M., & Pontefract, A. (1994). Does oculomotor readiness mediate cognitive control of visual attention? Revisited! In C. Umilta & M. Moscovitch (Eds.), Attention and Performance Xv - Conscious and Nonconscious Information Processing (Vol. 15, pp. 333-350).Google Scholar
  40. Kowler, E., Anderson, E., Dosher, B., & Blaser, E. (1995). The role of attention in the programming of saccades. Vision Research, 35(13), 1897-1916. Google Scholar
  41. Marino, A. C., & Mazer, J. A. (2016). Perisaccadic updating of visual representations and attentional states: Linking behavior and neurophysiology. Frontiers in Systems Neuroscience, 10, 3. Google Scholar
  42. Marshall, L., & Bays, P. M. (2013). Obligatory encoding of task-irrelevant features depletes working memory resources. Journal of Vision, 13(2).
  43. Matin, E. (1974). Saccadic suppression: A review and an analysis. Psychological Bulletin, 81(12), 899-917. Google Scholar
  44. Matsukura, M., & Vecera, S. P. (2011). Object-based selection from spatially-invariant representations: Evidence from a feature-report task. Attention, Perception & Psychophysics, 73(2), 447-457. Google Scholar
  45. McConkie, G. W., & Currie, C. B. (1996). Visual stability across saccades while viewing complex pictures. Journal of Experimental Psychology: Human Perception and Performance, 22(3), 563-581. Google Scholar
  46. McConkie, G. W., & Rayner, K. (1976). Identifying the span of the effective stimulus in reading: Literature review and theories of reading. In H. Singer & R. B. Ruddell (Eds.), Theoretical models and processes in reading (pp. 137-162). Newark DE: International Reading Association.Google Scholar
  47. Moore, C. M., Stephens, T., & Hein, E. (2010). Features, as well as space and time, guide object persistence. Psychonomic Bulletin & Review, 17(5), 731-736. Google Scholar
  48. Moore, T., & Fallah, M. (2004). Microstimulation of the frontal eye field and its effects on covert spatial attention. Journal of Neurophysiology, 91(1), 152-162. Scholar
  49. Morey, R. D. (2008). Confidence intervals from normalized data: A correction to Cousineau (2005). Tutorial in Quantitative Methods for Psychology, 4, 61-64.Google Scholar
  50. O'Regan, J. K., & Lévy-Schoen, A. (1983). Integrating visual information from successive fixations: Does trans-saccadic fusion exist? Vision Research, 23(8), 765-768. Google Scholar
  51. Poth, C. H., & Schneider, W. X. (2016). Breaking object correspondence across saccades impairs object recognition: The role of color and luminance. Journal of Vision, 16(11).
  52. Richard, A. M., Luck, S. J., & Hollingworth, A. (2008). Establishing object correspondence across eye movements: Flexible use of spatiotemporal and surface feature information. Cognition, 109(1), 66-88. Google Scholar
  53. Rolfs, M. (2015). Attention in active vision: A perspective on perceptual continuity across saccades. Perception, 44(8-9), 900-919. Google Scholar
  54. Rutishauser, U., & Koch, C. (2007). Probabilistic modeling of eye movement data during conjunction search via feature-based attention. Journal of Vision, 7(6), 20. Google Scholar
  55. Schafer, R. J., & Moore, T. (2011). Selective attention from voluntary control of neurons in prefrontal cortex. Science, 332(6037), 1568-1571. Google Scholar
  56. Schneider, W., Eschmann, A., & Zuccolotto, A. (2002). E-Prime user’s guide. Pittsburgh, PA: Psychology Software Tools, Inc.Google Scholar
  57. Schut, M. J., Fabius, J. H., Van der Stoep, N., & Van der Stigchel, S. (2017). Object files across eye movements: Previous fixations affect the latencies of corrective saccades. Attention, Perception & Psychophysics, 79(1), 138-153. Google Scholar
  58. Schut, M. J., Van der Stoep, N., Postma, A., & Van der Stigchel, S. (2017). The cost of making an eye movement: A direct link between visual working memory and saccade execution. Journal of Vision, 17(6).
  59. Serences, J. T., Ester, E. F., Vogel, E. K., & Awh, E. (2009). Stimulus-specific delay activity in human primary visual cortex. Psychological Science, 20(2), 207-214. Google Scholar
  60. Shao, N., Li, J., Shui, R. D., Zheng, X. J., Lu, J. G., & Shen, M. W. (2010). Saccades elicit obligatory allocation of visual working memory. Memory & Cognition, 38(5), 629-640. Google Scholar
  61. Shen, M. W., Tang, N., Wu, F., Shui, R. D., & Gao, Z. F. (2013). Robust object-based encoding in visual working memory. Journal of Vision, 13(2), 11. Google Scholar
  62. Tas, A. C., Dodd, M. D., & Hollingworth, A. (2012). The role of surface feature continuity in object-based inhibition of return. Visual Cognition, 20(1), 29-47. Google Scholar
  63. Tas, A. C., Luck, S. J., & Hollingworth, A. (2016). The relationship between visual attention and visual working memory encoding: A dissociation between covert and overt orienting. Journal of Experimental Psychology: Human Perception and Performance, 42(8), 1121-1138. Google Scholar
  64. Tas, A. C., Moore, C. M., & Hollingworth, A. (2012). An object-mediated updating account of insensitivity to trans-saccadic change. Journal of Vision, 12(11).
  65. Thompson, K. G., Biscoe, K. L., & Sato, T. R. (2005). Neuronal basis of covert spatial attention in the frontal eye field. Journal of Neuroscience, 25(41), 9479-9487. Google Scholar
  66. Van der Stigchel, S., & Hollingworth, A. (2018). Visuo-spatial working memory as a fundamental component of the eye movement system. Current Directions in Psychological Science, 27(2), 136-143. Google Scholar
  67. White, A. L., Rolfs, M., & Carrasco, M. (2013). Adaptive deployment of spatial and feature-based attention before saccades. Vision Research, 85, 26-35. Google Scholar
  68. Williams, L. G. (1967). The effects of target specification on objects fixated during visual search. Acta Psychologica, 27, 355-360. Google Scholar
  69. Woodman, G. F., & Vogel, E. K. (2008). Selective storage and maintenance of an object's features in visual working memory. Psychonomic Bulletin & Review, 15(1), 223-229. Google Scholar
  70. Yin, J., Zhou, J., Xu, H., Liang, J., Gao, Z., & Shen, M. (2012). Does high memory load kick task-irrelevant information out of visual working memory? Psychonomic Bulletin & Review, 19(2), 218-224. Google Scholar

Copyright information

© The Psychonomic Society, Inc. 2019

Authors and Affiliations

  1. 1.Department of Psychological and Brain SciencesThe University of IowaIowa CityUSA
  2. 2.Department of Psychology and NeuroscienceDrake UniversityDes MoinesUSA

Personalised recommendations