Advertisement

Lexical processing depends on sublexical processing: Evidence from the visual world paradigm and aphasia

  • Heather R. DialEmail author
  • Bob McMurray
  • Randi C. Martin
Perceptual/Cognitive Constraints on the Structure of Speech Communication: In Honor of Randy Diehl
  • 71 Downloads

Abstract

Some early studies of people with aphasia reported strikingly better performance on lexical than on sublexical speech perception tasks. These findings challenged the claim that lexical processing depends on sublexical processing and suggested that acoustic information could be mapped directly to lexical representations. However, Dial and Martin (Neuropsychologia 96: 192-212, 2017) argued that these studies failed to match the discriminability of targets and distractors for the sublexical and lexical stimuli and showed that when using closely matched tasks with natural speech tokens, no patient performed substantially better at the lexical than at the sublexical processing task. In the current study, we sought to provide converging evidence for the dependence of lexical on sublexical processing by examining the perception of synthetic speech stimuli varied on a voice-onset time continuum using eye-tracking methodology, which is sensitive to online speech perception processes. Eight individuals with aphasia and ten age-matched controls completed two visual world paradigm tasks: phoneme (sublexical) and word (lexical) identification. For both identification and eye-movement data, strong correlations were observed between the sublexical and lexical tasks. Critically, no patient within the control range on the lexical task was impaired on the sublexical task. Overall, the current study supports the claim that lexical processing depends on sublexical processing. Implications for inferring deficits in people with aphasia and the use of sublexical tasks to assess sublexical processing are also discussed.

Keywords

Speech perception Perceptual categorization and identification Eye movements Cognitive 

Notes

Acknowledgements

We wish to acknowledge the contribution of the participants, particularly those with aphasia, to the current study. We would like to thank the members of the Brain and Language Lab at Rice University and the MACLab at University of Iowa for assistance. Finally, we would like to thank the reviewers for their thoughtful comments and suggestions. This work was supported by the Gertrude Maurin fund (HRD) and the T.L.L. Temple Foundation Neuroplasticity Lab (RM) at Rice University and NIH grant DC 008089 (BM).

Data for the experiments reported here are available at: https://osf.io/9z8x2.

Supplementary material

13414_2019_1718_MOESM1_ESM.docx (631 kb)
ESM 1 (DOCX 631 kb)

References

  1. Allopena, P., Magnuson, J., & Tanenhaus, M. (1998). Tracking the time course of spoken word recognition using eye movements: Evidence for continuous mapping models. Journal of Memory and Language, 38, 419-439. doi: https://doi.org/10.1006/jmla.1997.2558 CrossRefGoogle Scholar
  2. Basso, A., Casati, G., & Vignolo, L. (1977). Phonemic identification defect in aphasia. Cortex, 13, 85-95. doi: https://doi.org/10.1016/s0010-9452(77)80057-9 CrossRefGoogle Scholar
  3. Blumstein, S. E., Baker, E., & Goodglass, H. (1977a). Phonological factors in auditory comprehension in aphasia. Neuropsychologia, 15(1), 19-30. doi: https://doi.org/10.1016/0028-3932(77)90111-7 CrossRefGoogle Scholar
  4. Blumstein, S., Burton, M., Baum, S., Waldstein, R., & Katz, D. (1994). The role of lexical status on the phonetic categorization of speech in aphasia. Brain and Language, 46, 181-197. doi:  https://doi.org/10.1006/brln.1994.1011 CrossRefGoogle Scholar
  5. Blumstein, S., Cooper, W., Zurif, E. & Caramazza, A. (1977b). The perception and production of voice-onset time in aphasia. Neuropsychologia, 15, 371–383. doi: https://doi.org/10.1016/0028-3932(77)90089-6 CrossRefGoogle Scholar
  6. Chen, Q., & Mirman, D. (2012). Competition and cooperation among similar representations: Toward a unified account of facilitative and inhibitory effects of lexical neighbors. Psychological Review, 119, 417-430. doi:  https://doi.org/10.1037/a0027175 CrossRefGoogle Scholar
  7. Cole, R. A., & Scott, B. (1974). Toward a theory of speech perception. Psychological Review, 81(4), 348. doi: https://doi.org/10.1037/h0036656 CrossRefGoogle Scholar
  8. Crawford, J.R., Howell, D.C., 1998. Comparing an individual's test score against norms derived from small samples. The Clinical Neuropsychologist, 12, 482–486.CrossRefGoogle Scholar
  9. Dahan, D., Magnuson, J.S., Tanenhaus, M.K. & Hogan, E. (2001) Subcategorical mismatches and the time course of lexical access: Evidence for lexical competition. Language and Cognitive Processes, 16, 507-534. doi: https://doi.org/10.1080/01690960143000074 CrossRefGoogle Scholar
  10. Dalton, D., Cruickshanks, K., Klein, B., Klein, R., Wiley, T., Nondahl, D., 2003. The impact of hearing loss on quality of life in older adults. The Gerontol. 43, 661–668.  https://doi.org/10.1093/geront/43.5.661.CrossRefGoogle Scholar
  11. Dial, H.R., & Martin, R.C. (2017). Evaluating the relationship between sublexical and lexical processing in speech perception: Evidence from aphasia. Neuropsychologia, 96, 192-212. doi: https://doi.org/10.1016/j.neuropsychologia.2017.01.009 CrossRefGoogle Scholar
  12. Diehl, R. L., Lotto, A. J., & Holt, L. L. (2004). Speech perception. Annual Review of Psychology, 55, 149-179. doi: https://doi.org/10.1146/annurev.psych.55.090902.142028 CrossRefGoogle Scholar
  13. Goldinger, S. D. (1998). Echoes of echoes? An episodic theory of lexical access. Psychological Review, 105(2), 251-279. doi: https://doi.org/10.1037/0033-295x.105.2.251 CrossRefGoogle Scholar
  14. Gow, David. (2012). The cortical organization of lexical knowledge: A dual lexicon model of spoken language processing. Brain and Language, 121, 273-288. doi: https://doi.org/10.1016/j.bandl/2012.03.005 CrossRefGoogle Scholar
  15. Hickok, G. (2014). The architecture of speech production and the role of the phoneme in speech processing. Language, Cognition and Neuroscience, 29, 2-20. doi: https://doi.org/10.1080/01690965.2013.834370 CrossRefGoogle Scholar
  16. Hickok, G., & Poeppel, D. (2000). Towards a functional neuroanatomy of speech perception. Trends in Cognitive Sciences, 4(4), 131-138. doi: https://doi.org/10.1016/s1364-6613(00)01463-7 CrossRefGoogle Scholar
  17. Hickok, G., & Poeppel, D. (2004). Dorsal and ventral streams: A framework for understanding aspects of the functional anatomy of language. Cognition, 92, 67-99. doi: https://doi.org/10.1016/j.cognition.2003.11.001 CrossRefGoogle Scholar
  18. Hickok, G., & Poeppel, D. (2007). The cortical organization of speech processing. Nature Reviews Neuroscience, 8, 292-402. doi: https://doi.org/10.1038/nrn2113 CrossRefGoogle Scholar
  19. Huettig, F., & Atlmann, G. (2005). Word meaning and the control of eye fixation: Semantic competitor effects and the visual world paradigm. Cognition, 96, B23-B32. doi:  https://doi.org/10.1016/j.cognition.2004.10.003 CrossRefGoogle Scholar
  20. International Organization for Standardization, 2000. Acoustics-Statistical Distribution of Hearing Thresholds as a Function of Age. ISO7029. Geneva: ISO.Google Scholar
  21. Johnson, K. (1997). Speech perception without speaker normalization: An exemplar model. In Johnson & Mullenix (Eds.), Talker variability in speech processing (145-165). San Diego: Academic Press.Google Scholar
  22. Liberman, A. M., Harris, K. S., Hoffman, H. S., & Griffith, B. C. (1957). The discrimination of speech sounds within and across phoneme boundaries. Journal of Experimental Psychology, 54(5), 358-368. doi: https://doi.org/10.1037/h0044417 CrossRefGoogle Scholar
  23. Luce, P., Goldinger, S., Auer, E., & Vitevitch, M. (2000). Phonetic priming, neighborhood activation and PARSYN. Perception and Psychophysics, 62, 615-625. doi: https://doi.org/10.3758/bf03212113 CrossRefGoogle Scholar
  24. Luce, P., & Pisoni, D. (1998). Recognizing spoken words: The neighborhood activation model. Ear and Hearing, 19, 1-36. doi: https://doi.org/10.1097/00003446-199802000-00001 CrossRefGoogle Scholar
  25. MATLAB and Statistics Toolbox Release (2015). The MathWorks, Inc., Natick, Massachusetts, United States.Google Scholar
  26. McClelland, J., & Elman, J. (1986). The TRACE model of speech perception. Cognitive Psychology, 18, 1-86. doi: https://doi.org/10.1016/0010-0285(86)90015-0 CrossRefGoogle Scholar
  27. McMurray, B. (2017a). EyelinkAnal. Available from: http://osf.io/c35tg
  28. McMurray, B. (2017b) Nonlinear curvefitting for Psycholinguistics. Version XX. Available from: https://osf.io/4atgv/
  29. McMurray, B., Aslin, R., Tanenhaus, M., Spivey, M., & Subik, D. (2008). Gradient sensitivity to within-category variation in words and syllables. Journal of Experimental Psychology: Human Perception and Performance, 34(6), 1609-1631. doi:  https://doi.org/10.1037/a0011747 Google Scholar
  30. McMurray, B., Aslin, R. N., & Toscano, J. C. (2009). Statistical learning of phonetic categories: insights from a computational approach. Developmental Science, 12(3), 369-378. doi: https://doi.org/10.1111/j.1467-7687.2009.00822.x CrossRefGoogle Scholar
  31. McMurray, B., Danelz, A., Rigler, H. & Seedorff, M. (2018). Speech categorization develops slowly through adolescence. Developmental Psychology, 54, 1472-1491. doi:  https://doi.org/10.1037/dev0000542 CrossRefGoogle Scholar
  32. McMurray, B., Munson, C., & Tomblin, J.B. (2014). Individual differences in language ability are related to variation in word recognition, not speech perception: Evidence from eye movements. Journal of Speech, Language and Hearing Research, 57, 1344-1362. doi:  https://doi.org/10.1044/2014_JSLHR-L-13-0196.doi:10.1016/j.cogpsych.2009.06.003 CrossRefGoogle Scholar
  33. McMurray, B., Samuelson, V. M., Lee, S. H., & Tomblin, J. B.(2010). Individual differences in online spoken word recognition: Implications for SLI. Cognitive Psychology, 60, 1–39.CrossRefGoogle Scholar
  34. McMurray, B., Tanenhaus, M., & Aslin, R. (2002). Gradient effects of within-category phonetic variation on lexical access. Cognition, 86(2), B33-B42. doi:  https://doi.org/10.1016/S0010-0277(02)00157-9 CrossRefGoogle Scholar
  35. Miceli, G., Gainotti, G., Caltagirone, C., & Masullo, C. (1980). Some aspects of phonological impairment in aphasia. Brain and Language, 11, 159-169. doi: https://doi.org/10.1016/0093-934x(80)90117-0 CrossRefGoogle Scholar
  36. Miller, J.L. & Volaitis, L.E. (1989). Effect of speaking rate on the perceptual structure of a phonetic category. Perception & Psychophysics, 46(6), 505-512.  https://doi.org/10.3758/BF03208147 CrossRefGoogle Scholar
  37. Mirman, D., Yee, E., Blumstein, S., & Magnuson, J. (2011). Theories of spoken word recognition deficits in aphasia: Evidence from eye-tracking and computational modeling. Brain and Language, 117, 53-68.CrossRefGoogle Scholar
  38. Nearey, T.M. & Rochet, B.L. (1994). Effects of place of articulation and vowel context on VOT production and perception for French and English stops. Journal of the International Phonetic Association, 24(1), 1-18. doi: https://doi.org/10.1017/S0025100300004965 CrossRefGoogle Scholar
  39. Norris, D. (1994). Shortlist: A connectionist model of continuous speech recognition. Cognition, 52, 189–234. doi: https://doi.org/10.1016/0010-0277(94)90043-4 CrossRefGoogle Scholar
  40. Norris, D., McQueen, J., & Cutler, A. (2000). Merging information in speech recognition: Feedback is never necessary. Behavioral and Brain Sciences, 23, 299-370. doi: https://doi.org/10.1017/s0140525x00003241 CrossRefGoogle Scholar
  41. Oden, G. & Massaro, D.W. (1978). Integration of featural information in speech perception. Psychological Review, 85(3), 172-191. doi: https://doi.org/10.1037/0033-295X.85.3.172 CrossRefGoogle Scholar
  42. Pierrehumbert, J. B. (2001). Exemplar dynamics: Word frequency, lenition and contrast. In Bybee & Hopper (Eds.), Frequency effects and emergent grammar (45-64). Amsterdam: John Benjamins.Google Scholar
  43. Repp, B. (1984). Categorical perception: Issues, methods, findings. In: N. Lass (Ed.), Speech and language: Advances in basic research and practice (243-335). Orlando, Florida: Academic Press, Inc.Google Scholar
  44. Salverda, A.P., Dahan, D. & McQueen, J. (2003). The role of prosodic boundaries in the resolution of lexical embedding in speech comprehension. Cognition, 90(1), 51-89. doi: https://doi.org/10.1016/S0010-0277(03)00139-2 CrossRefGoogle Scholar

Copyright information

© The Psychonomic Society, Inc. 2019

Authors and Affiliations

  • Heather R. Dial
    • 1
    Email author
  • Bob McMurray
    • 2
  • Randi C. Martin
    • 3
  1. 1.Department of Communication Sciences and DisordersUniversity of Texas at AustinAustinUSA
  2. 2.Department of Psychological and Brain Sciences, Department of Communication Sciences and Disorders, Department of Linguistics, Department of OtolaryngologyUniversity of IowaIowa CityUSA
  3. 3.Department of Psychological SciencesRice UniversityHoustonUSA

Personalised recommendations