Gradient and categorical patterns of spoken-word recognition and processing of phonetic details

  • Félix Desmeules-TrudelEmail author
  • Tania S. Zamuner


The speech signal is inherently rich, and this reflects complexities of speech articulation. During spoken-word recognition, listeners must process time-dependent perceptual cues, and the role that these cues play varies depending on the phonological status of the sounds across languages. For example, Canadian French has both phonologically nasal vowels (i.e., contrastive) and coarticulatorily nasalized vowels, as opposed to English, which only has coarticulatorily nasalized vowels. We investigated how vowel nasalization duration, a time-dependent phonetic cue to the French nasal contrast, affects spoken-word recognition. Using eye tracking in two visual world paradigm experiments, the results show that fine-grained phonetic information is important for lexical recognition, and that lexical access is dependent on small variations in the signal. The results also show gradient interpretation of ambiguous vowel nasalization despite the phonemic distinction between phonological nasal vowels and coarticulatorily nasalized vowels in Canadian French. Gradience was found when words were ambiguous, and interpretation was more categorical when words were unambiguous. These results support the hypothesis of gradient interpretation of phonetic cues for ambiguously produced stimuli and the storage of coarticulatory information in phono-lexical representations for a language that has a phonological contrast for nasality (i.e., French).


Eye tracking Coarticulation processing Vowel nasalization Gradience Spoken-word recognition 


Author Note

We are grateful to Dr. Bob McMurray, Dr. Marc Brunelle, Dr. Laura Sabourin, and Dr. Kevin McMullin for their comments on earlier versions of this work. We also want to thank Émilie Piché for her help with data collection, research teams at the University of Ottawa’s Centre for Child Language Research and Sound Patterns Laboratory, audiences at the LabPhon 16 Conference, 2017 CLA meeting, MOLT workshop 2016, and two anonymous reviewers. F.D.-T. benefited from doctoral scholarships from the Fonds de recherche du Québec - Société et Culture and Social Sciences and Humanities Research Council of Canada (Bombardier scholarship). All remaining errors are our own.

Supplementary material

13414_2019_1693_MOESM1_ESM.docx (342 kb)
ESM 1 (DOCX 341 kb)


  1. Archangeli, D. (1988). Aspects of underspecification theory. Phonology, 5, 183–207.CrossRefGoogle Scholar
  2. Baayen, R. H., van Rij, J., de Cat, C., & Wood, S. N. (2018). Autocorrelated errors in experimental data in the language sciences: Some solutions offered by generalized additive mixed models. In D. Speelman, K. Heylen, & D. Geeraerts (Eds.), Mixed-effects regression models in linguistics (pp. 49–69). Cham: Springer.CrossRefGoogle Scholar
  3. Barr, D. J. (2008). Analyzing “visual world” eyetracking data using multilevel logistic regression. Journal of Memory and Language, 59(4), 457–474.CrossRefGoogle Scholar
  4. Beddor, P. S. (2009). A coarticulatory path to sound change. Language, 85(4), 785–821.CrossRefGoogle Scholar
  5. Beddor, P. S., Harnsberger, J. D., & Lindemann, S. (2002). Language-specific patterns of vowel-to-vowel coarticulation: Acoustic structures and their perceptual correlates. Journal of Phonetics, 30(4), 591–627.CrossRefGoogle Scholar
  6. Beddor, P. S., & Krakow, R. A. (1999). Perception of coarticulatory nasalization by speakers of English and Thai: Evidence for partial compensation. The Journal of the Acoustical Society of America, 106(5), 2868–2887.CrossRefGoogle Scholar
  7. Beddor, P. S., McGowan, K. B., Boland, J. E., Coetzee, A. W., & Brasher, A. (2013). The time course of perception of coarticulation. Journal of the Acoustical Society of America, 133(4), 2350–2366.CrossRefGoogle Scholar
  8. Boersma, P., & Weenink, D. (2015). Praat: Doing phonetics by computer [Computer software]. Retrieved from
  9. Carignan, C (2013). When nasal is more than nasal: the oral articulation of nasal vowels in two dialects of French (Unpublished doctoral dissertation). University of Illinois at Urbana-Champaign.Google Scholar
  10. Carignan, C. (2014). An acoustic and articulatory examination of the “oral” in “nasal”: The oral articulations of French nasal vowels are not arbitrary. Journal of Phonetics, 46(1), 23–33.CrossRefGoogle Scholar
  11. Cho, T., Kim, D., & Kim, S. (2017). Prosodically-conditioned fine-tuning of coarticulatory vowel nasalization in English. Journal of Phonetics, 64, 71–89.CrossRefGoogle Scholar
  12. Cohn, A. C. (1990). Phonetic and phonological rules of nasalisation (Unpublished doctoral dissertation). University of California, Los Angeles.Google Scholar
  13. Côté, M.-H. (2012). Laurentian French (Québec): Extra vowels, missing schwas, and surprising liaison consonants. In R. Gess, C. Lyche, & T. Meisenburg (Eds.), Phonological variation in French: Illustrations from three continents (pp. 235–274), Amsterdam: John Benjamins.CrossRefGoogle Scholar
  14. Cross, A. M., & Joanisse, M. F. (2018). Eyetracking of coarticulatory cue responses in children and adults. Language, Cognition, and Neuroscience, 33(10), 1315–1324.CrossRefGoogle Scholar
  15. Dahan, D., Magnuson, J. S., Tanenhaus, M. K., & Hogan, E. M. (2001). Subcategorical mismatches and the time course of lexical access: Evidence for lexical competition. Language and Cognitive Processes, 16(5/6), 507–534.CrossRefGoogle Scholar
  16. Delvaux, V. (2006). Production des voyelles nasales en français québécois [Production of nasal vowels in Quebec French]. In Actes Des 26 es Journées D’études Sur La Parole, 383–386.Google Scholar
  17. Desmeules-Trudel, F. (2015). Propriétés aérodynamiques des voyelles nasales et potentiellement nasalisées en français québécois [Aerodynamic properties of Québécois French nasal and potentially nasalized vowels]. In S. Vinerte (Ed.), Proceedings of the 2015 Annual Conference of the Canadian Linguistics Association. Ottawa, ON: Canadian Linguistics Association.Google Scholar
  18. Desmeules-Trudel, F. (2018). Spoken word recognition in native and second language Canadian French: Phonetic detail and representation of vowel nasalization (Unpublished doctoral dissertation). University of Ottawa, Ottawa, ON.Google Scholar
  19. Desmeules-Trudel, F., & Brunelle, M. (2018). Phonotactic restrictions condition the realization of vowel nasality and nasal coarticulation: Duration and airflow measurements in Québécois French and Brazilian Portuguese. Journal of Phonetics, 69, 43–61.CrossRefGoogle Scholar
  20. Desmeules-Trudel, F., Moore, C., & Zamuner, T. (2019). Monolingual and bilingual children's processing of coarticulation cues during spoken word recognition. Manuscript submitted for review.Google Scholar
  21. Farnetani, E., & Recasens, D. (2010). Coarticulation and connected speech processes. In W. J. Hardcastle, J. Laver, & F. E. Gibbon (Eds.), The handbook of phonetic sciences (2nd, pp. 316–352). New York: Wiley-Blackwell.CrossRefGoogle Scholar
  22. Fischer, B. (1992). Saccadic reaction time: Implications for reading, dyslexia, and visual cognition. In K. Rayner (Ed.), Eye movements and visual cognition (pp. 31–45). New York: Springer.CrossRefGoogle Scholar
  23. Fowler, C. A. (1980). Coarticulation and theories of extrinsic timing. Journal of Phonetics, 8, 113–133.Google Scholar
  24. Fowler, C. A. (2006). Compensation for coarticulation reflects gesture perception, not spectral contrast. Perception & Psychophysics, 68(2), 161–177.CrossRefGoogle Scholar
  25. Fry, D. B., Abramson, A. S., Eimas, P. D., & Liberman, A. M. (1962). The identification and discrimination of synthetic vowels. Language and Speech, 5(4), 171–189.CrossRefGoogle Scholar
  26. Gow, D. W. (2003). Feature parsing: Feature cue mapping in spoken word recognition. Perception & Psychophysics, 65(4), 575–590.CrossRefGoogle Scholar
  27. Huettig, F., Rommers, J., & Meyer, A. S. (2011). Using the visual world paradigm to study language processing: A review and critical evaluation. Acta Psychologica, 137(2), 151–171.CrossRefGoogle Scholar
  28. Keating, P. A. (1988). Underspecification in phonetics. Phonology, 5, 275–292.CrossRefGoogle Scholar
  29. Lahiri, A., & Marslen-wilson, W. (1991). The mental representation of lexical form: A phonological approach to the recognition lexicon. Cognition, 38, 245–294.CrossRefGoogle Scholar
  30. Léon, P. R. (1983). Les voyelles nasales et leurs réalisations dans les parlers français du Canada [Nasal vowels and their realizations in spoken French in Canada]. Langue Française, 60, 48–64.CrossRefGoogle Scholar
  31. Liberman, A. M., Harris, K. S., Hoffman, H. S., & Griffith, B. C. (1957). The discrimination of speech sounds within and across phoneme boundaries. Journal of Experimental Psychology, 54(5), 358–368.CrossRefGoogle Scholar
  32. Martin, P. (2002). Le système vocalique du français du Québec: De l’acoustique à la phonologie [The vowel system of Québec French. From acoustics to phonology]. La Linguistique, 38(2), 71–88.CrossRefGoogle Scholar
  33. Martin, P., Beaudoin-Bégin, A.-M., Goulet, M.-J., & Roy, J.-P. (2001). Les voyelles nasales en français du Québec [Nasal vowels in Québec French]. La Linguistique, 37(2), 49–70.CrossRefGoogle Scholar
  34. McClelland, J., & Elman, J. (1986). The TRACE model of speech perception. Cognitive Psychology, 18, 1–86.CrossRefGoogle Scholar
  35. McMurray, B., Clayards, M. A., Tanenhaus, M. K., & Aslin, R. N. (2008). Tracking the time course of phonetic cue integration during spoken word recognition. Psychonomic Bulletin & Review, 15(6), 1064–1071.CrossRefGoogle Scholar
  36. McMurray, B., Tanenhaus, M. K., & Aslin, R. N. (2002). Gradient effects of within-category phonetic variation on lexical access. Cognition, 86(2), B33–B42.CrossRefGoogle Scholar
  37. Paquette-Smith, M., Fecher, N., & Johnson, E. K. (2016). Two-year-olds’ sensitivity to subphonemic mismatch during online spoken word recognition. Attention, Perception, &Psychophysics, 78(8), 2329–2340.CrossRefGoogle Scholar
  38. Porretta, V., Kyröläinen, A.-J., van Rij, J., & Järvikivi, J. (2017). Visual world paradigm data: From preprocessing to nonlinear time-course analysis. In I. Czarnowski, R. J. Howlett, & L. C. Jain (Eds.), Intelligent decision technologies 2017 (pp. 268–277). Cham: Springer.Google Scholar
  39. Porretta, V., Tucker, B. V., & Järvikivi, J. (2016). The influence of gradient foreign accentedness and listener experience on word recognition. Journal of Phonetics, 58, 1–21.CrossRefGoogle Scholar
  40. R Core Team. (2017). The R Project for Statistical Computing [Computer software]. Retrieved from
  41. Salverda, A. P., Kleinschmidt, D., & Tanenhaus, M. K. (2014). Immediate effects of anticipatory coarticulation in spoken-word recognition. Journal of Memory and Language, 71(1), 145–163.CrossRefGoogle Scholar
  42. Steriade, D. (1995). Underspecification and markedness. In J. Goldsmith (Ed.), The handbook of phonological theory (pp. 114–175). Malden: Wiley-Blackwell.Google Scholar
  43. Székely, A., Jacobsen, T., D’Amico, S., Devescovi, A., Andonova, E., Herron, D., … Bates, E. (2004). A new on-line resource for psycholinguistic studies. Journal of Memory and Language, 51(2), 247–250.CrossRefGoogle Scholar
  44. van Rij, J., Hollebrandse, B., & Hendriks, P. (2016). Children’s eye gaze reveals their use of discourse context in object pronoun resolution. In A. Holler & K. Suckow (Eds.), Empirical perspectives on anaphora resolution (pp. 267–293). Berlin: De Gruyter.Google Scholar
  45. van Rij, J., Wieling, M., Baayen, R. H., & van Rijn, H. (2016). itsadug: Interpreting time series and autocorrelated data using GAMMs [R package]. Retrieved from
  46. Wickham, H. (2009). ggplot2: Elegant graphics for data analysis. New York: Springer.CrossRefGoogle Scholar
  47. Wood, S. N. (2017). Generalized additive models: An introduction with R (2nd ed.). Boca Raton: Chapman and Hall/CRC.CrossRefGoogle Scholar
  48. Zamuner, T. S., Moore, C., & Desmeules-Trudel, F. (2016). Toddlers’ sensitivity to within-word coarticulation during spoken word recognition: Developmental differences in lexical competition. Journal of Experimental Child Psychology, 152, 136–148.CrossRefGoogle Scholar

Copyright information

© The Psychonomic Society, Inc. 2019
corrected publication 2019

Authors and Affiliations

  1. 1.Department of LinguisticsUniversity of OttawaOttawaCanada
  2. 2.Department of Psychology (Brain and Mind Institute)Western UniversityLondonCanada

Personalised recommendations