Attention, Perception, & Psychophysics

, Volume 81, Issue 5, pp 1698–1714 | Cite as

Canal–otolith interactions alter the perception of self-motion direction

  • Gianluca Macauda
  • Andrew W. Ellis
  • Luzia Grabherr
  • Roman B. Di Francesco
  • Fred W. MastEmail author


Few studies have investigated the perception of vestibular stimuli when they occur in sequences. Here, three experiments (ntotal = 33) are presented that focus on intravestibular motion sequences and the underlying perceptual decision-making process. Natural vestibular stimulation (yaw rotation or translation) was used to investigate the discrimination process of the direction of a subsequent spatially congruent or incongruent translation or rotation. The few existing studies focusing on unimodal motion sequences have uncovered self-motion aftereffects, similar to the visual motion aftereffect, possibly due to altered processing of sensory stimuli. An alternative hypothesis predicts a shift of spatial attention due to the cue motion influencing perception of the subsequent motion stimulus. The results show that participants systematically misjudged the direction of motion stimuli well above the detection threshold if the direction of the preceding cue motion stimulus was congruent with the direction of the target (a motion aftereffect). Hierarchical drift diffusion models were used to analyze the data. The results suggest that altered perceptual decision-making and the resulting misperceptions are likely to originate in altered processing of sensory vestibular information.


Motion aftereffect Drift diffusion model Vestibular cognition Perceptual decision-making 


Supplementary material

13414_2019_1691_MOESM1_ESM.docx (32 kb)
ESM 1 (DOCX 32 kb)


  1. Adams, R. (1834). An account of a peculiar optical phenomenon seen after having looked at a moving body, etc. London and Edinburgh Philosophical Magazine and Journal of Science (3rd series), V, 373–374.Google Scholar
  2. Angelaki, D. E., McHenry, M. Q., Dickman, J. D., Newlands, S. D., & Hess, B. J. M. (1999). Computation of inertial motion: Neural strategies to resolve ambiguous otolith information. Journal of Neuroscience, 19, 316–327.CrossRefGoogle Scholar
  3. Anstis, S., Verstraten, F. A., & Mather, G. (1998). The motion aftereffect. Trends in Cognitive Sciences, 2, 111–117.CrossRefGoogle Scholar
  4. Brown, H., Friston, K., & Bestmann, S. (2011). Active inference, attention, and motor preparation. Frontiers in Psychology, 2, 218. CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bürkner, P.-C. (2017). brms: An R package for Bayesian multilevel models using Stan. Journal of Statistical Software, 80(1).
  6. Carriot, J., Jamali, M., Brooks, J. X., & Cullen, K. E. (2015). Integration of canal and otolith inputs by central vestibular neurons is subadditive for both active and passive self-motion: Implication for perception. Journal of Neuroscience, 35, 3555–3565. CrossRefPubMedGoogle Scholar
  7. Chapman, L. J., & Chapman, J. P. (1987). The measurement of handedness. Brain and Cognition, 6, 175–183.CrossRefGoogle Scholar
  8. Chowdhury, S. A., Takahashi, K., DeAngelis, G. C., & Angelaki, D. E. (2009). Does the middle temporal area carry vestibular signals related to self-motion? Journal of Neuroscience, 29, 12020–12030. CrossRefPubMedGoogle Scholar
  9. Clark, T. K., Yi, Y., Galvan-Garza, R. C., Bermúdez Rey, M. C., & Merfeld, D. M. (2018). When uncertain, does human self-motion decision-making fully utilize complete information? Journal of Neurophysiology, 119, 1485–1496. CrossRefPubMedGoogle Scholar
  10. Coniglio, A. J., & Crane, B. T. (2014). Human yaw rotation aftereffects with brief duration rotations are inconsistent with velocity storage. Journal of the Association for Research in Otolaryngology, 15, 305–317. CrossRefPubMedPubMedCentralGoogle Scholar
  11. Crane, B. T. (2012a). Fore–aft translation aftereffects. Experimental Brain Research, 219, 477–487. CrossRefPubMedPubMedCentralGoogle Scholar
  12. Crane, B. T. (2012b). Roll aftereffects: Influence of tilt and inter-stimulus interval. Experimental Brain Research, 223, 89–98. CrossRefPubMedPubMedCentralGoogle Scholar
  13. Crane, B. T. (2016). Perception of combined translation and rotation in the horizontal plane in humans. Journal of Neurophysiology, 116, 1275–1285. CrossRefPubMedPubMedCentralGoogle Scholar
  14. Cullen, K. E. (2012). The vestibular system: Multimodal integration and encoding of self-motion for motor control. Trends in Neurosciences, 35, 185–196. CrossRefPubMedPubMedCentralGoogle Scholar
  15. Cuturi, L. F., & MacNeilage, P. R. (2014). Optic flow induces nonvisual self-motion aftereffects. Current Biology, 24, 2817–2821. CrossRefPubMedGoogle Scholar
  16. DeAngelis, G. C., & Angelaki, D. E. (2012). Visual–vestibular integration for self-motion perception. In M. M. Murray & M. T. Wallace (Eds.), The neural bases of multisensory processes (pp. 629–650). Boca Raton: CRC Press/Taylor & Francis.Google Scholar
  17. Dickman, J. D., & Angelaki, D. E. (2002). Vestibular convergence patterns in vestibular nuclei neurons of alert primates. Journal of Neurophysiology, 88, 3518–3533. CrossRefPubMedGoogle Scholar
  18. Driver, J., & Spence, C. (1998). Crossmodal attention. Current Opinion in Neurobiology, 8, 245–253. CrossRefPubMedGoogle Scholar
  19. Drugowitsch, J., DeAngelis, G. C., Angelaki, D. E., & Pouget, A. (2015). Tuning the speed–accuracy trade-off to maximize reward rate in multisensory decision-making. eLife, 4, e06678.
  20. Drugowitsch, J., DeAngelis, G. C., Klier, E. M., Angelaki, D. E., & Pouget, A. (2014). Optimal multisensory decision-making in a reaction-time task. eLife, 3, e03005. CrossRefPubMedCentralGoogle Scholar
  21. Ellis, A. W., Klaus, M. P., & Mast, F. W. (2017). Vestibular cognition: The effect of prior belief on vestibular perceptual decision making. Journal of Neurology, 264(Suppl. 1), 74–80. CrossRefPubMedGoogle Scholar
  22. Ferrè, E. R., Longo, M., Fiori, F., & Haggard, P. (2013). Vestibular modulation of spatial perception. Frontiers in Human Neuroscience, 7, 660. CrossRefPubMedPubMedCentralGoogle Scholar
  23. Figliozzi, F., Guariglia, P., Silvetti, M., Siegler, I., & Doricchi, F. (2005). Effects of vestibular rotatory accelerations on covert attentional orienting in vision and touch. Journal of Cognitive Neuroscience, 17, 1638–1651. CrossRefPubMedGoogle Scholar
  24. Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2014). Bayesian data analysis (Vol. 2). Boca Raton: CRC Press.Google Scholar
  25. Grabherr, L., Nicoucar, K., Mast, F. W., & Merfeld, D. M. (2008). Vestibular thresholds for yaw rotation about an earth-vertical axis as a function of frequency. Experimental Brain Research, 186, 677–681. CrossRefPubMedGoogle Scholar
  26. Guo, J., Gabry, J., Goodrich, B., Lee, D., Sakrejda, K., Trustees of Columbia University, … Niebler, E. (2017). rstan: R interface to Stan (Version 2.16.2). Retrieved from
  27. Hillyard, S. A., Vogel, E. K., & Luck, S. J. (1998). Sensory gain control (amplification) as a mechanism of selective attention: Electrophysiological and neuroimaging evidence. Philosophical Transactions of the Royal Society B, 353, 1257–1270. CrossRefGoogle Scholar
  28. Huk, A. C., Ress, D., & Heeger, D. J. (2001). Neuronal basis of the motion aftereffect reconsidered. Neuron, 32, 161–172.CrossRefGoogle Scholar
  29. Ilg, U. J. (2008). The role of areas MT and MST in coding of visual motion underlying the execution of smooth pursuit. Vision Research, 48, 2062–2069.CrossRefGoogle Scholar
  30. Konkle, T., Wang, Q., Hayward, V., & Moore, C. I. (2009). Motion aftereffects transfer between touch and vision. Current Biology, 19, 745–750. CrossRefPubMedPubMedCentralGoogle Scholar
  31. Lim, K., Wang, W., & Merfeld, D. M. (2017). Unbounded evidence accumulation characterizes subjective visual vertical forced-choice perceptual choice and confidence. Journal of Neurophysiology, 118, 2636–2653.CrossRefGoogle Scholar
  32. MacNeilage, P. R., Turner, A. H., & Angelaki, D. E. (2010). Canal–otolith interactions and detection thresholds of linear and angular components during curved-path self-motion. Journal of Neurophysiology, 104, 765–773. CrossRefPubMedPubMedCentralGoogle Scholar
  33. Mather, G., Pavan, A., Campana, G., & Casco, C. (2008). The motion after-effect reloaded. Trends in Cognitive Sciences, 12, 481–487. CrossRefPubMedPubMedCentralGoogle Scholar
  34. McDonald, J. J., Green, J. J., Störmer, V. S., & Hillyard, S. A. (2012). Cross-modal spatial cueing of attention influences visual perception. In M. M. Murray & M. T. Wallace (Eds.), The neural bases of multisensory processes (pp. 509–528). Boca Raton: CRC Press/Taylor & Francis.Google Scholar
  35. Merfeld, D. M., Clark, T. K., Lu, Y. M., & Karmali, F. (2016). Dynamics of individual perceptual decisions. Journal of Neurophysiology, 115, 39–59. CrossRefPubMedGoogle Scholar
  36. Merfeld, D. M., Zupan, L. H., & Gifford, C. A. (2001). Neural processing of gravito-inertial cues in humans: II. Influence of the semicircular canals during eccentric rotation. Journal of Neurophysiology, 85, 1648–1660.CrossRefGoogle Scholar
  37. Nooij, S. A. E., Nesti, A., Bülthoff, H. H., & Pretto, P. (2016). Perception of rotation, path, and heading in circular trajectories. Experimental Brain Research, 234, 2323–2337. CrossRefPubMedPubMedCentralGoogle Scholar
  38. Panichi, R., Botti, F. M., Ferraresi, A., Faralli, M., Kyriakareli, A., Schieppati, M., & Pettorossi, V. E. (2011). Self-motion perception and vestibulo-ocular reflex during whole body yaw rotation in standing subjects: The role of head position and neck proprioception. Human Movement Science, 30, 314–332.CrossRefGoogle Scholar
  39. Pettorossi, V. E., Panichi, R., Botti, F. M., Kyriakareli, A., Ferraresi, A., Faralli, M., … Bronstein, A. M. (2013). Prolonged asymmetric vestibular stimulation induces opposite, long-term effects on self-motion perception and ocular responses. Journal of Physiology, 591, 1907–1920.CrossRefGoogle Scholar
  40. Posner, M. I., Snyder, C. R., & Davidson, B. J. (1980). Attention and the detection of signals. Journal of Experimental Psychology: General, 109, 160–174. CrossRefGoogle Scholar
  41. R Core Team. (2013). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. Retrieved from Google Scholar
  42. Ratcliff, R., & McKoon, G. (2008). The diffusion decision model: Theory and data for two-choice decision tasks. Neural Computation, 20, 873–922. CrossRefPubMedPubMedCentralGoogle Scholar
  43. Ruz, M., & Lupiáñez, J. (2002). A review of attentional capture: On its automaticity and sensitivity to endogenous control. Psicológica, 23, 283–309.Google Scholar
  44. Shadlen, M. N., & Kiani, R. (2013). Decision making as a window on cognition. Neuron, 80, 791–806. CrossRefPubMedGoogle Scholar
  45. Shuren, J., Hartley, T., & Heilman, K. M. (1998). The effects of rotation on spatial attention. Neuropsychiatry, Neuropsychology, and Behavioral Neurology, 11, 72–75.PubMedGoogle Scholar
  46. Silberpfennig, J. (1941). Contributions to the problem of eye movements. Stereotactic and Functional Neurosurgery, 4, 1–13. CrossRefGoogle Scholar
  47. Singmann, H. (2017). Diffusion/Wiener model analysis with brms—Part I: Introduction and estimation. Retrieved from
  48. Singmann, H. (2018). Diffusion/Wiener model analysis with brms—Part II: Model diagnostics and model fit. Retrieved from
  49. Spence, C. (2010). Crossmodal spatial attention. Annals of the New York Academy of Sciences, 1191, 182–200. CrossRefPubMedGoogle Scholar
  50. Valko, Y., Lewis, R. F., Priesol, A. J., & Merfeld, D. M. (2012). Vestibular labyrinth contributions to human whole-body motion discrimination. Journal of Neuroscience, 32, 13537–13542. CrossRefPubMedGoogle Scholar
  51. Vallar, G., Sterzi, R., Bottini, G., Cappa, S., & Rusconi, M. L. (1990). Temporary remission of left hemianesthesia after vestibular stimulation: A sensory neglect phenomenon. Cortex, 26, 123–131. CrossRefPubMedGoogle Scholar
  52. Vandekerckhove, J., Tuerlinckx, F., & Lee, M. D. (2011). Hierarchical diffusion models for two-choice response times. Psychological Methods, 16, 44–62. CrossRefPubMedGoogle Scholar
  53. Vecera, S. P., Rothbart, M. K., & Posner, M. I. (1991). Development of spontaneous alternation in infancy. Journal of Cognitive Neuroscience, 3, 351–354. CrossRefPubMedGoogle Scholar
  54. Vehtari, A., Gelman, A., & Gabry, J. (2017). Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Statistics and Computing, 27, 1413–1432. CrossRefGoogle Scholar
  55. Wallis, T. S. A., Funke, C. M., Ecker, A. S., Gatys, L. A., Wichmann, F. A., & Bethge, M. (2017). A parametric texture model based on deep convolutional features closely matches texture appearance for humans. Journal of Vision, 17(12), 5. CrossRefPubMedGoogle Scholar
  56. Wertheim, A. H., Mesland, B. S., & Bles, W. (2001). Cognitive suppression of tilt sensations during linear horizontal self-motion in the dark. Perception, 30, 733–741. CrossRefPubMedGoogle Scholar

Copyright information

© The Psychonomic Society, Inc. 2019

Authors and Affiliations

  1. 1.Department of PsychologyUniversity of BernBernSwitzerland

Personalised recommendations