Advertisement

Voluntary control of illusory contour formation

  • William J. HarrisonEmail author
  • Reuben Rideaux
Article

Abstract

The extent to which visual inference is shaped by attentional goals is unclear. Voluntary attention may simply modulate the priority with which information is accessed by the higher cognitive functions involved in perceptual decision making. Alternatively, voluntary attention may influence fundamental visual processes, such as those involved in segmenting an incoming retinal signal into a structured scene of coherent objects, thereby determining perceptual organization. Here we tested whether the segmentation and integration of visual form can be determined by an observer’s goals, by exploiting a novel variant of the classical Kanizsa figure. We generated predictions about the influence of attention with a machine classifier and tested these predictions with a psychophysical response classification technique. Despite seeing the same image on each trial, observers’ perception of illusory spatial structure depended on their attentional goals. These attention-contingent illusory contours directly conflicted with other, equally plausible visual forms implied by the geometry of the stimulus, revealing that attentional selection can determine the perceived layout of a fragmented scene. Attentional goals, therefore, not only select precomputed features or regions of space for prioritized processing, but under certain conditions also greatly influence perceptual organization, and thus visual appearance.

Keywords

Object-based attention Cognitive and attentional control Grouping Segmentation 

Notes

Author note

We are indebted to Peter Bex, who developed the novel Kanizsa figure with us and provided helpful feedback on our study design and results. We also thank Tom Wallis for feedback on an earlier draft that led to the mixture modeling and for overall improvements in the manuscript. This research was supported by funding to W.J.H. from King’s College Cambridge and the National Health and Medical Research Council of Australia (APP1091257), and by funding to R.R. (ECF-2017-573) from the Leverhulme Trust. Both authors designed the experiment and collected the data. W.J.H. analyzed the experimental data, R.R. performed the SVM analyses, and both authors performed the model comparisons. Both authors contributed equally to the writing of the manuscript. We declare we have no competing interests.

Supplementary material

13414_2019_1678_MOESM1_ESM.pdf (174 kb)
Supplementary Fig. 1 Support vector machine (SVM) images. From left to right, the first two columns show examples of wide and narrow exemplar images used to train the SVM in the inducers, triangle, and star protocols. The column on the right shows examples of the test image for each protocol. (PDF 174 kb)
13414_2019_1678_MOESM2_ESM.pdf (195 kb)
Supplementary Fig. 2 Raw classification images and psychophysical performance. (a) Classification images without averaging of edges via rotation. Note that the individual images show varying degrees of a complete triangle. One explanation for this is that observers perceived a partial shape—for example, a single or pair of unconnected lines between the cued inducers. Given the strength of the Kanizsa illusion in producing the percept of a triangle, rather than a partial shape, a more likely explanation is that observers perceived a triangle, but only used part of this triangle to perform the task. (b) Threshold performance across blocks shown separately for each observer. Thresholds were the midpoint of a cumulative Gaussian fit to accuracy data for each session. (PDF 195 kb)
13414_2019_1678_MOESM3_ESM.pdf (171 kb)
Supplementary Fig. 3 Individual classification images revealing a potential influence of non-cued structure. These images were created by summing each classification image with a flipped version of itself. Note that the emergent structure aligns to the geometry of the star implied by our Kanizsa figure (Fig. 1a). (PDF 170 kb)

References

  1. Abbey, C. K., Eckstein, M. P., & Bochud, F. O. (1999). Estimation of human-observer templates in two-alternative forced-choice experiments. In E. A. Krupinski (Ed.), Proceedings of Medical Imaging 1999: Image perception and performance (pp. 284–295). Bellingham: International Society for Optics and Photonics.  https://doi.org/10.1117/12.349653 CrossRefGoogle Scholar
  2. Abrams, J., Barbot, A., & Carrasco, M. (2010). Voluntary attention increases perceived spatial frequency. Attention, Perception, & Psychophysics, 72, 1510–1521.  https://doi.org/10.3758/APP.72.6.1510 CrossRefGoogle Scholar
  3. Ahumada, A., & Lovell, J. (1971). Stimulus features in signal detection. Journal of the Acoustical Society of America, 49, 1751–1756.  https://doi.org/10.1121/1.1912577 CrossRefGoogle Scholar
  4. Ahumada, A. J. (1996). Perceptual classification images from Vernier acuity masked by noise. Perception, 25(1 Suppl), 2.  https://doi.org/10.1068/v96l0501 CrossRefGoogle Scholar
  5. Ahumada, A. J., Beard, B. L., & Ellis, S. R. (1998). Response classification images in Vernier acuity. Article presented at the 1998 Annual Meeting of the Association for Research in Vision and Ophthalmology, Fort Lauderdale.Google Scholar
  6. Anton-Erxleben, K., Henrich, C., & Treue, S. (2007). Attention changes perceived size of moving visual patterns. Journal of Vision, 7(11), 5.  https://doi.org/10.1167/7.11.5 CrossRefGoogle Scholar
  7. Barbot, A., Liu, S., Kimchi, R., & Carrasco, M. (2018). Attention enhances apparent perceptual organization. Psychonomic Bulletin and Review, 25, 1824–1832.  https://doi.org/10.3758/s13423-017-1365-x CrossRefGoogle Scholar
  8. Beard, B. L., & Ahumada, A. J., Jr. (1998). Technique to extract relevant image features for visual tasks. In B. E. Rogowitz & T. N. Pappas (Eds.), Human vision and electronic imaging III (pp. 79–85). Bellingham, WA: International Society for Optics and Photonics. 10.1117/12.320099Google Scholar
  9. Brainard, D. H. (1997). The Psychophysics Toolbox. Spatial Vision, 10, 433–436.  https://doi.org/10.1163/156856897X00357 CrossRefGoogle Scholar
  10. Carrasco, M. (2011). Visual attention: The past 25 years. Vision Research, 51, 1484–1525.  https://doi.org/10.1016/j.visres.2011.04.012 CrossRefGoogle Scholar
  11. Carrasco, M., Ling, S., & Read, S. (2004). Attention alters appearance. Nature Neuroscience, 7, 308–313.  https://doi.org/10.1038/nn1194 CrossRefGoogle Scholar
  12. Cornelissen, F. W., Peters, E. M., & Palmer, J. (2002). The Eyelink Toolbox: eye tracking with MATLAB and the Psychophysics Toolbox. Behavior Research Methods, Instruments, & Computers, 34, 613–617.  https://doi.org/10.3758/BF03195489 CrossRefGoogle Scholar
  13. Davis, G., & Driver, J. (1994). Parallel detection of Kanizsa subjective figures in the human visual system. Nature, 371, 791–793.  https://doi.org/10.1038/371791a0 CrossRefGoogle Scholar
  14. Driver, J., & Baylis, G. C. (1996). Edge-assignment and figure–ground segmentation in short-term visual matching. Cognitive Psychology, 31, 248–306.  https://doi.org/10.1006/cogp.1996.0018 CrossRefGoogle Scholar
  15. Gobell, J., & Carrasco, M. (2005). Attention alters the appearance of spatial frequency and gap size. Psychological Science, 16, 644–651.  https://doi.org/10.1111/j.1467-9280.2005.01588.x CrossRefGoogle Scholar
  16. Gold, J. M., Murray, R. F., Bennett, P. J., & Sekuler, A. B. (2000). Deriving behavioural receptive fields for visually completed contours. Current Biology, 10, 663–666.  https://doi.org/10.1016/S0960-9822(00)00523-6 CrossRefGoogle Scholar
  17. Gold, J. M., & Shubel, E. (2006). The spatiotemporal properties of visual completion measured by response classification. Journal of Vision, 6(4), 5.  https://doi.org/10.1167/6.4.5 CrossRefGoogle Scholar
  18. Harrison, W. J., Ayeni, A. J., & Bex, P. J. (2019). Attentional selection and illusory surface appearance. Scientific Reports.  https://doi.org/10.1038/s41598-018-37084-7
  19. Houtkamp, R., Spekreijse, H., & Roelfsema, P. R. (2003). A gradual spread of attention during mental curve tracing. Perception & Psychophysics, 65, 1136–1144.  https://doi.org/10.3758/BF03194840 CrossRefGoogle Scholar
  20. JASP Team. (2017). JASP [Computer software]. Retrieved from https://jasp-stats.org/download/
  21. Kanizsa, G. (1976). Subjective contours. Scientific American, 234, 48–52.CrossRefGoogle Scholar
  22. Liu, T., Abrams, J., & Carrasco, M. (2009). Voluntary attention enhances contrast appearance. Psychological Science, 20, 354–362.  https://doi.org/10.1111/j.1467-9280.2009.02300.x CrossRefGoogle Scholar
  23. Mareschal, I., Dakin, S. C., & Bex, P. J. (2006). Dynamic properties of orientation discrimination assessed by using classification images. Proceedings of the National Academy of Sciences, 103, 5131–5136.  https://doi.org/10.1073/pnas.0507259103 CrossRefGoogle Scholar
  24. Mattingley, J. B., Davis, G., & Driver, J. (1997). Preattentive filling-in of visual surfaces in parietal extinction. Science, 275, 671–674.CrossRefGoogle Scholar
  25. McMains, S., & Kastner, S. (2011). Interactions of top-down and bottom-up mechanisms in human visual cortex. Journal of Neuroscience, 31, 587–597.  https://doi.org/10.1523/JNEUROSCI.3766-10.2011 CrossRefGoogle Scholar
  26. Mihalas, S., Dong, Y., von der Heydt, R., & Niebur, E. (2011). Mechanisms of perceptual organization provide auto-zoom and auto-localization for attention to objects. Proceedings of the National Academy of Sciences, 108, 7583–7588.  https://doi.org/10.1073/pnas.1014655108 CrossRefGoogle Scholar
  27. Murray, M. M., Wylie, G. R., Higgins, B. A., Javitt, D. C., Schroeder, C. E., & Foxe, J. J. (2002). The spatiotemporal dynamics of illusory contour processing: Combined high-density electrical mapping, source analysis, and functional magnetic resonance imaging. Journal of Neuroscience, 22, 5055–5073.CrossRefGoogle Scholar
  28. Necker, L. A. (1832). LXI. Observations on some remarkable optical phænomena seen in Switzerland; and on an optical phænomenon which occurs on viewing a figure of a crystal or geometrical solid. London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1, 329–337.  https://doi.org/10.1080/14786443208647909 CrossRefGoogle Scholar
  29. Neri, P., & Heeger, D. J. (2002). Spatiotemporal mechanisms for detecting and identifying image features in human vision. Nature Neuroscience, 5, 812–816.  https://doi.org/10.1038/nn886 CrossRefGoogle Scholar
  30. Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10, 437–442.  https://doi.org/10.1163/156856897X00366 CrossRefGoogle Scholar
  31. Poort, J., Raudies, F., Wannig, A., Lamme, V. A. F., Neumann, H., & Roelfsema, P. R. (2012). The role of attention in figure–ground segregation in areas V1 and V4 of the visual cortex. Neuron, 75, 143–156.  https://doi.org/10.1016/j.neuron.2012.04.032 CrossRefGoogle Scholar
  32. Posner, M. I. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology, 32, 3–25.  https://doi.org/10.1080/00335558008248231 CrossRefGoogle Scholar
  33. Posner, M. I. (2016). Orienting of attention: Then and now. Quarterly Journal of Experimental Psychology, 69, 1864–1875.  https://doi.org/10.1080/17470218.2014.937446 CrossRefGoogle Scholar
  34. Qiu, F. T., Sugihara, T., & von der Heydt, R. (2007). Figure–ground mechanisms provide structure for selective attention. Nature Neuroscience, 10, 1492–1499.  https://doi.org/10.1038/nn1989 CrossRefGoogle Scholar
  35. Ringach, D. L., & Shapley, R. (1996). Spatial and temporal properties of illusory contours and amodal boundary completion. Vision Research, 36, 3037–3050.CrossRefGoogle Scholar
  36. Rubin, E. (1915). Synsoplevede Figurer: Studier i psykologisk Analyse/Visuell wahrgenommene Figuren: Studien in psychologischer Analyse [Visually perceived figures: Studies in psychological analysis]. Copenhagen, Denmark: Gyldendalske Boghandel.Google Scholar
  37. Shapley, R., Rubin, N., & Ringach, D. (2004). Visual segmentation and illusory contours. In L. M. Chalupa & J. S. Werner (Eds.), The visual neurosciences (Vol. 2, pp. 1119–1128). Cambridge: MIT Press. Retrieved from http://www.cns.nyu.edu/nava/MyPubs/Shapley-Rubin-Ringach_VisSeg_MITpress2004.pdf Google Scholar
  38. Stanley, D. A., & Rubin, N. (2003). fMRI activation in response to illusory contours and salient regions in the human Lateral Occipital Complex. Neuron, 37, 323–331.  https://doi.org/10.1016/S0896-6273(02)01148-0 CrossRefGoogle Scholar
  39. Stormer, V. S., McDonald, J. J., & Hillyard, S. A. (2009). Cross-modal cueing of attention alters appearance and early cortical processing of visual stimuli. Proceedings of the National Academy of Sciences, 106, 22456–22461.  https://doi.org/10.1073/pnas.0907573106 CrossRefGoogle Scholar
  40. Tse, P. U. (2005). Voluntary attention modulates the brightness of overlapping transparent surfaces. Vision Research, 45, 1095–1098.  https://doi.org/10.1016/j.visres.2004.11.001 CrossRefGoogle Scholar
  41. Turatto, M., Vescovi, M., & Valsecchi, M. (2007). Attention makes moving objects be perceived to move faster. Vision Research, 47, 166–178.  https://doi.org/10.1016/j.visres.2006.10.002 CrossRefGoogle Scholar
  42. van Lier, R., Vergeer, M., & Anstis, S. (2009). Filling-in afterimage colors between the lines. Current Biology, 19, R323–R324.  https://doi.org/10.1016/j.cub.2009.03.010 CrossRefGoogle Scholar
  43. von der Heydt, R., Macuda, T., & Qiu, F. T. (2005). Border-ownership-dependent tilt aftereffect. Journal of the Optical Society of America A, 22, 2222–2229.  https://doi.org/10.1364/JOSAA.22.002222 CrossRefGoogle Scholar
  44. von der Heydt, R, Peterhans, E., & Baumgartner, G. (1984). Illusory contours and cortical neuron responses. Science, 224, 1260–1262.  https://doi.org/10.1126/science.6539501 CrossRefGoogle Scholar
  45. Wagemans, J., Elder, J. H., Kubovy, M., Palmer, S. E., Peterson, M. A., Singh, M., & von der Heydt, R. (2012). A century of Gestalt psychology in visual perception: I. Perceptual grouping and figure–ground organization. Psychological Bulletin, 138, 1172–1217.  https://doi.org/10.1037/a0029333 CrossRefGoogle Scholar
  46. Wannig, A., Stanisor, L., & Roelfsema, P. R. (2011). Automatic spread of attentional response modulation along Gestalt criteria in primary visual cortex. Nature Neuroscience, 14, 1243–1244.  https://doi.org/10.1038/nn.2910 CrossRefGoogle Scholar
  47. Zhou, H., Friedman, H. S., & von der Heydt, R. (2000). Coding of border ownership in monkey visual cortex. Journal of Neuroscience, 20, 6594–6611.  https://doi.org/10.1523/JNEUROSCI.20-17-06594.2000 CrossRefGoogle Scholar

Copyright information

© The Psychonomic Society, Inc. 2019

Authors and Affiliations

  1. 1.Department of PsychologyUniversity of CambridgeCambridgeUK
  2. 2.Queensland Brain InstituteUniversity of QueenslandSt LuciaAustralia

Personalised recommendations