Advertisement

Attention, Perception, & Psychophysics

, Volume 81, Issue 2, pp 462–475 | Cite as

Top-down modulation of shape and roughness discrimination in active touch by covert attention

  • Anna MetzgerEmail author
  • Stefanie Mueller
  • Katja Fiehler
  • Knut Drewing
Article

Abstract

Due to limitations in perceptual processing, information relevant to momentary task goals is selected from the vast amount of available sensory information by top-down mechanisms (e.g. attention) that can increase perceptual performance. We investigated how covert attention affects perception of 3D objects in active touch. In our experiment, participants simultaneously explored the shape and roughness of two objects in sequence, and were told afterwards to compare the two objects with regard to one of the two features. To direct the focus of covert attention to the different features we manipulated the expectation of a shape or roughness judgment by varying the frequency of trials for each task (20%, 50%, 80%), then we measured discrimination thresholds. We found higher discrimination thresholds for both shape and roughness perception when the task was unexpected, compared to the conditions in which the task was expected (or both tasks were expected equally). Our results suggest that active touch perception is modulated by expectations about the task. This implies that despite fundamental differences, active and passive touch are affected by feature selective covert attention in a similar way.

Keywords

Haptic perception Top-down Expectation Attention Roughness Shape Psychophysics 

Notes

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft SFB TRR 135, A05 & A04 and Fi 1567/4-2. Response and movement data of individual participants from all experiments presented here is available at  https://doi.org/10.5281/zenodo.1490108. We are grateful to Matteo Toscani and Matteo Valsecchi for helpful discussions and comments, Lorilei Alley for helping to improve grammar and style, Laura Wilhelm for help with data collection, and to Steffen Bruckbauer for help with the figures and for running the experiments within the framework of his Master’s thesis.

References

  1. Akatsuka, K., Wasaka, T., Nakata, H., Kida, T., & Kakigi, R. (2007). The effect of stimulus probability on the somatosensory mismatch field. Experimental Brain Research, 181(4), 607–614.Google Scholar
  2. Bar, M. (2004). Visual objects in context. Nature Reviews Neuroscience, 5(8), 617–629.Google Scholar
  3. Bauer, M. (2006). Tactile spatial attention enhances gamma-band activity in somatosensory cortex and reduces low-frequency activity in parieto-occipital areas. Journal of Neuroscience, 26(2), 490–501.Google Scholar
  4. Bays, P. M., Flanagan, J. R., & Wolpert, D. M. (2006). Attenuation of self-generated tactile sensations is predictive, not postdictive. PLoS Biology, 4(2), e28.Google Scholar
  5. Bensmaia, S. (2016). Texture from touch. In I. E. Prescott TJ, Ahissar E (Ed.), Scholarpedia of touch (pp. 207–215). Amsterdam: Atlantis Press.Google Scholar
  6. Blake, D. T., Hsiao, S. S., & Johnson, K. O. (1997). Neural coding mechanisms in tactile pattern recognition: the relative contributions of slowly and rapidly adapting mechanoreceptors to perceived roughness. Journal of Neuroscience, 17(19), 7480–7489.Google Scholar
  7. Burton, H., Abend, N. S., MacLeod, A. M. K., Sinclair, R. J., Snyder, A. Z., & Raichle, M. E. (1999). Tactile attention tasks enhance activation in somatosensory regions of parietal cortex: A positron emission tomography study. Cerebral Cortex, 9(7), 662–674.Google Scholar
  8. Carrasco, M. (2011). Visual attention: The past 25 years. Vision Research, 51(13), 1484–1525.Google Scholar
  9. Cascio, C. J., & Sathian, K. (2001). Temporal cues contribute to tactile perception of roughness. Journal of Neuroscience, 21(14), 5289–5296.Google Scholar
  10. Chapman, C. E., Bushnell, M. C., Miron, D., Duncan, G. H., & Lund, J. P. (1987). Sensory perception during movement in man. Experimental Brain Research, 68(3), 516–524.Google Scholar
  11. Chapman, C. E., Jiang, W., & Lamarre, Y. (1988). Modulation of lemniscal input during conditioned arm movements in the monkey. Experimental Brain Research, 72(2), 316–334.Google Scholar
  12. Cheeseman, J. R., Norman, J. F., & Kappers, A. M. L. (2016). Dynamic cutaneous information is sufficient for precise curvature discrimination. Scientific Reports, 6, 25473.Google Scholar
  13. Chen, T. L., Babiloni, C., Ferretti, A., Perrucci, M. G., Romani, G. L., Rossini, P. M., Tartaro, A., Del Gratta, C. (2010). Effects of somatosensory stimulation and attention on human somatosensory cortex: An fMRI study. NeuroImage, 53(1), 181–188.Google Scholar
  14. Connor, C. E., & Johnson, K. O. (1992). Neural coding of tactile texture: comparison of spatial and temporal mechanisms for roughness perception. Journal of Neuroscience, 12(9), 3414–3426.Google Scholar
  15. Craig, J. C. (1985). Attending to two fingers: two hands are better than one. Attention, Perception, & Psychophysics, 38(6), 496–511.Google Scholar
  16. Drewing, K. (2012). After experience with the task humans actively optimize shape discrimination in touch by utilizing effects of exploratory movement direction. Acta Psychologica, 141(3), 295–303.Google Scholar
  17. Drewing, K., Lezkan, A., & Ludwig, S. (2011). Texture discrimination in active touch: Effects of the extension of the exploration and their exploitation. 2011 IEEE World Haptics Conference, WHC 2011, (1), 215–220.Google Scholar
  18. Driver, J., & Spence, C. (1998). Crossmodal attention. Current Opinion in Neurobiology, 8(2), 245–253.Google Scholar
  19. Forster, B., & Eimer, M. (2005). Covert attention in touch: Behavioral and ERP evidence for costs and benefits. Psychophysiology, 42(2), 171–179.Google Scholar
  20. Franzen, O. V. E., Markowitz, J., & Swets, J. A. (1970). Spatially-limited attention to vibrotactile stimulation. Perception & Psychophysics, 7(4), 193–196.Google Scholar
  21. Frissen, I., Ziat, M., Campion, G., Hayward, V., & Guastavino, C. (2012). The effects of voluntary movements on auditory-haptic and haptic-haptic temporal order judgments. Acta Psychologica, 141(2), 140–148.Google Scholar
  22. Gamzu, E., & Ahissar, E. (2001). Importance of temporal cues for tactile spatial- frequency discrimination. Journal of Neuroscience, 21(18), 7416–7427.Google Scholar
  23. Giachritsis, C. D., Wing, A. M., & Lovell, P. G. (2009). The role of spatial integration in the perception of surface orientation with active touch. Attention, Perception, & Psychophysics, 71(7), 1628–1640.Google Scholar
  24. Gibson, J. (1962). Observations on active touch. Psychological Review, 69(6), 477–491.Google Scholar
  25. Gilbert, C. D., & Li, W. (2013). Top-down influences on visual processing. Nature Reviews Neuroscience, 14(5), 350–363.Google Scholar
  26. Gilbert, C. D., & Sigman, M. (2007). Brain states: Top-down influences in sensory processing. Neuron, 54(5), 677–696.Google Scholar
  27. Gomez-Ramirez, M., Hysaj, K., & Niebur, E. (2016). Neural mechanisms of selective attention in the somatosensory system. Journal of Neurophysiology, 116(3), 1218-1231.Google Scholar
  28. Gomez-Ramirez, M., Trzcinski, N. K., Mihalas, S., Niebur, E., & Hsiao, S. S. (2014). Temporal correlation mechanisms and their role in feature selection: A single-unit study in primate somatosensory cortex. PLoS Biology, 12(11), e1002004.Google Scholar
  29. Haegens, S., Luther, L., & Jensen, O. (2012). Somatosensory anticipatory alpha activity increases to suppress distracting input. Journal of Cognitive Neuroscience, 24(3), 677–685.Google Scholar
  30. Haegens, S., Nacher, V., Luna, R., Romo, R., & Jensen, O. (2011). Oscillations in the monkey sensorimotor network influence discrimination performance by rhythmical inhibition of neuronal spiking. Proceedings of the National Academy of Sciences, 108(48), 19377–19382.Google Scholar
  31. Helbig, H. B., & Ernst, M. O. (2007). Optimal integration of shape information from vision and touch. Experimental Brain Research, 179(4), 595–606.Google Scholar
  32. Hsiao, S. S., O’Shaughnessy, D. M., & Johnson, K. O. (1993). Effects of selective attention on spatial form processing in monkey primary and secondary somatosensory cortex. Journal of Neurophysiology, 70(1), 444–447.Google Scholar
  33. Jeffreys, H. (1961). The Theory of Probability (3rd ed.). Oxford.Google Scholar
  34. Johnson, K. O., & Phillips, J. R. (1981). Tactile spatial resolution. I. two-point discrimination, gap detection, grating resolution, and letter recognition. Journal of Neurophysiology, 46(6), 1177–1192.Google Scholar
  35. Jones, S. R., Kerr, C. E., Wan, Q., Pritchett, D. L., Hamalainen, M., & Moore, C. I. (2010). Cued spatial attention drives functionally relevant modulation of the Mu rhythm in primary somatosensory cortex. Journal of Neuroscience, 30(41), 13760–13765.Google Scholar
  36. Juravle, G., McGlone, F., & Spence, C. (2013). Context-dependent changes in tactile perception during movement execution. Frontiers in Psychology, 4, 1–10.Google Scholar
  37. Kaim, L., & Drewing, K. (2010). Exploratory pressure influences haptic shape perception via force signals. Attention, Perception & Psychophysics, 72(3), 823–838.Google Scholar
  38. Kaim, L., & Drewing, K. (2011). Exploratory strategies in haptic softness discrimination are tuned to achieve high levels of task performance. IEEE Transactions on Haptics, 4(4), 242–252.Google Scholar
  39. Kwok, H. F., Darkins, K., Oddo, C. M., Beccai, L., & Wing, A. M. (2010). Contact force and duration effects on static and dynamic tactile texture discrimination. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 6192 LNCS (PART 2), 9–16.Google Scholar
  40. Lederman, S. J., & Klatzky, R. L. (1987). Hand movement: A window into haptic object recognition. Cognitive Psychology, 19(3), 342–368.Google Scholar
  41. Lezkan, A., & Drewing, K. (2014). Unequal but fair? Weights in the serial integration of haptic texture information. In International Conference on Human Haptic Sensing and Touch Enabled Computer Applications (pp. 386–392).Google Scholar
  42. Louw, S., Kappers, A. M., & Koenderink, J. J. (2000). Haptic detection thresholds of Gaussian profiles over the whole range of spatial scales. Experimental Brain Research, 132(3), 369–374.Google Scholar
  43. Metzger, A., Lezkan, A., & Drewing, K. (2018). Integration of serial sensory information in haptic perception of softness. Journal of Experimental Psychology: Human Perception and Performance , 44(4), 551-565.Google Scholar
  44. Moscatelli, A., Mezzetti, M., & Lacquaniti, F. (2012). Modeling psychophysical data at the population-level: The generalized linear mixed model. Journal of Vision, 12(11): 26.Google Scholar
  45. Nefs, H. T., Kappers, A. M. L., & Koenderink, J. J. (2001). Amplitude and spatial-period discrimination in sinusoidal gratings by dynamic touch. Perception, 30(10), 1263–1274.Google Scholar
  46. O’Malley, M., & Goldfarb, M. (2002). The effect of force saturation on the haptic perception of detail. IEEE/ASME Transactions on Mechatronics, 7(3), 280–288.Google Scholar
  47. Posner, M. I. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology, 32, 3–25.Google Scholar
  48. Roland, P. E., & Mortensen, E. (1987). Somatosensory detection of microgeometry, macrogeometry and kinesthesia in man. Brain Research, 434(1), 1–42.Google Scholar
  49. Schuett, H. H., Harmeling, S., Macke, J. H., & Wichmann, F. A. (2016). Painfree and accurate Bayesian estimation of psychometric functions for (potentially) overdispersed data. Vision Research, 122, 105–123.Google Scholar
  50. Seki, K., Perlmutter, S. I., & Fetz, E. E. (2003). Sensory input to primate spinal cord is presynaptically inhibited during voluntary movement. Nature Neuroscience, 6(12), 1309–1316.Google Scholar
  51. Shiffrin, M, R., Craig C, J., & Cohen, E. (1973). On the degree of attention and capacity limitation in tactile processing. Perception & Psychophysics, 13(2), 328–336.Google Scholar
  52. Simões-Franklin, C., Whitaker, T. A., & Newell, F. N. (2011). Active and passive touch differentially activate somatosensory cortex in texture perception. Human Brain Mapping, 32(7), 1067–1080.Google Scholar
  53. Sinclair, R. J., Kuo, J. J., & Burton, H. (2000). Effects on discrimination performance of selective attention to tactile features. Somatosensory & Motor Research, 17(2), 145–157.Google Scholar
  54. Smith, A. M., Chapman, C. E., Deslandes, M., Langlais, J. S., & Thibodeau, M. P. (2002). Role of friction and tangential force variation in the subjective scaling of tactile roughness. Experimental Brain Research, 144(2), 211–223.Google Scholar
  55. Smith, A. M., Chapman, C. E., Donati, F., Fortier-Poisson, P., & Hayward, V. (2009). Perception of simulated local shapes using active and passive touch. Journal of Neurophysiology, 102(6), 3519–3529.Google Scholar
  56. Srinivasan, M. A., & LaMotte, R. H. (1995). Tactual discrimination of softness. Journal of Neurophysiology, 3(1), 88–101.Google Scholar
  57. Summerfield, C., & Egner, T. (2009). Expectation (and attention) in visual cognition. Trends in Cognitive Sciences, 13(9), 403–409.Google Scholar
  58. Taylor, M. M., & Lederman, S. J. (1975). Tactile roughness of grooved surfaces: A model and the effect of friction. Attention, Perception & Psychophysics, 7(1), 23–36.Google Scholar
  59. Toscani, M., Valsecchi, M., & Gegenfurtner, K. R. (2013). Optimal sampling of visual information for lightness judgments. Proceedings of the National Academy of Sciences, 110(27), 11163–11168.Google Scholar
  60. Treue, S. (2003). Visual attention: The where, what, how and why of saliency. Current Opinion in Neurobiology, 13(4), 428–432.Google Scholar
  61. van Ede, F., de Lange, F., Jensen, O., & Maris, E. (2011). Orienting attention to an upcoming tactile event involves a spatially and temporally specific modulation of sensorimotor alpha- and beta-band oscillations. Journal of Neuroscience, 31(6), 2016–2024.Google Scholar
  62. van Ede, F., Jensen, O., & Maris, E. (2010). Tactile expectation modulates pre-stimulus ??-band oscillations in human sensorimotor cortex. NeuroImage, 51(2), 867–876.Google Scholar
  63. Vitello, M., Ernst, M., & Fritschi, M. (2006). An instance of tactile suppression: Active exploration impairs tactile sensitivity for the direction of lateral movement. In Proceedings of the 2006 EuroHaptics Conference (pp. 351–355).Google Scholar
  64. Voss, M., Ingram, J. N., Wolpert, D. M., & Haggard, P. (2008). Mere expectation to move causes attenuation of sensory signals. PLoS ONE, 3(8), 2–6.Google Scholar
  65. Voudouris, D., & Fiehler, K. (2017). Enhancement and suppression of tactile signals during reaching. Journal of Experimental Psychology: Human Perception and Performance, 43(6), 1238–1248.Google Scholar
  66. Watanabe, T., Nanez, J. E., & Sasaki, Y. (2001). Perceptual learning without perception. Nature, 413(October), 844–848.Google Scholar
  67. Weber, A. I., Saal, H. P., Lieber, J. D., Cheng, J.-W., Manfredi, L. R., Dammann, J. F., & Bensmaia, S. J. (2013). Spatial and temporal codes mediate the tactile perception of natural textures. Proceedings of the National Academy of Sciences of the United States of America, 110(42), 17107–17112.Google Scholar
  68. Wichmann, F. A., & Hill, N. J. (2001). The psychometric function: I. Fitting, sampling, and goodness of fit. Perception and Psychophysics, 63(8), 1293–1313.Google Scholar
  69. Williams, S. R., Shenasa, J., & Chapman, C. E. (1998). Time course and magnitude of movement-related gating of tactile detection in humans. I. Importance of stimulus location. Journal of Neurophysiology, 79(2), 947–963.Google Scholar
  70. Ziat, M., Hayward, V., Chapman, C. E., Ernst, M. O., & Lenay, C. (2010). Tactile suppression of displacement. Experimental Brain Research, 206(3), 299–310.Google Scholar

Copyright information

© The Psychonomic Society, Inc. 2018

Authors and Affiliations

  • Anna Metzger
    • 1
    Email author
  • Stefanie Mueller
    • 1
  • Katja Fiehler
    • 1
  • Knut Drewing
    • 1
  1. 1.Justus-Liebig University GiessenGiessenGermany

Personalised recommendations