Advertisement

Attention, Perception, & Psychophysics

, Volume 81, Issue 2, pp 476–488 | Cite as

Pushing people to their tipping point: Phenomenal tipping point is predicted by phenomenal vertical and intuitive beliefs

  • Dennis M. ShafferEmail author
  • Kirsten M. Greer
  • Erica Bishop
  • Mara Hernandez
  • Cage Cramer
  • Jackson T. Schaffer
  • Brandon Short
  • Ky Mattingly
  • Meghan Burkhardt
  • Echoe Smith
Article

Abstract

Previous work has shown that people overestimate their own body tilt by a factor of about 1.5, the same factor by which people overestimate geographical and man-made slopes. In Experiment 1 we investigated whether people can accurately identify their own and others’ tipping points (TPs) – the point at which they are tilted backward and would no longer be able to return to upright – as well as their own and others’ center of mass (COM) – the relative position of which is used to determine actual TP. We found that people overestimate their own and others’ TP when tilted backward, estimate their own and others’ COM higher than actual, and that COM estimation is unrelated to TP. In Experiment 2, we investigated people’s intuitive beliefs about the TP. We also investigated the relationship between phenomenal TP and perceived vertical. Whether verbally (conceptually) estimating the TP, drawing the TP, or demonstrating the position of the TP, people believe that the TP is close to 45°. In Experiment 3, we found that anchoring influences phenomenal TP and vertical. When accounting for starting position, the TP seems to be best predicted by an intuitive belief that it is close to 45°. In Experiment 4, we show that there is no difference in phenomenal TP and vertical when being tilted about the feet or waist/hips. We discuss the findings in terms of action-perception differences found in other domains and practical implications.

Keywords

Perception and action Spatial cognition Visual perception 

Notes

Acknowledgement

We would like thank Roger Swaney for designing and putting together the apparatus used in Experiment 4.

References

  1. Adolph K. E. (2000). Specificity of learning: Why infants fall over a cliff. Psychological Science, 11, 290-295.  https://doi.org/10.1111/1467-9280.00258. CrossRefGoogle Scholar
  2. Adolph, K. E. (2002). Learning to keep balance. In (R. Kail (Ed.), Advances in child development and behavior. (Vol. 30, pp. 1-41). Amsterdam: Elsevier Science.Google Scholar
  3. Almeida, C. W. L., Castro, C. H. M., Pedreira, P. G., Heymann, R. E. & Szejnfeld, V. L. (2011). Percentage height of center of mass is associated with the risk of falls among elderly women. Gait & Posture, 34, 208-212.  https://doi.org/10.1016/j.gaitpost.2011.04.013 CrossRefGoogle Scholar
  4. Baud-Bovy, G., & Gentaz, E. (2004). The visual localization of the centre of triangles in young children and adults. Current Psychology Letters, 2, 2-11.Google Scholar
  5. Baud-Bovy, G., & Soechting, J. (2001). Visual localization of the center of mass of compact, asymmetric, two-dimensional shapes. Journal of Experimental Psychology: Human Perception and Performance, 27, 692– 706.  https://doi.org/10.1037//0096-1523.27.3.692 Google Scholar
  6. Bhalla, M., & Proffitt, D. R. (1999). Visual-motor recalibration in geographical slant perception. Journal of Experimental Psychology: Human Perception and Performance, 25, 1076– 1096.Google Scholar
  7. Bingham, G. P., & Muchinsky, M. M. (1993). Center of mass perception and inertial frames of reference. Perception & Psychophysics, 54, 617-632.CrossRefGoogle Scholar
  8. Bridgeman, B., & Hoover, M. (2008). Processing spatial layout by perception and sensorimotor interaction. The Quarterly Journal of Experimental Psychology, 61, 851-859. DOI: https://doi.org/10.1080/17470210701623712 CrossRefGoogle Scholar
  9. Centers for Disease Control (2016). Falls are leading cause of injury and death in older Americans. https://www.cdc.gov/media/releases/2016/p0922-older-adult-falls.html
  10. Cholewiak, S. A., Fleming, R. W., & Singh, M. (2013). Visual perception of the stability of Asymmetric three-dimensional objects. Journal of Vision, 13, 1-13.  https://doi.org/10.1167/13.4.12 CrossRefGoogle Scholar
  11. Creem-Regehr, S.H., Gooch, A.A., Sahm, C.S., & Thompson, W.B. (2004). Perceiving virtual geographical slant: Action influences perception. Journal of Experimental Psychology: Human Perception and Performance, 30, 811–821.  https://doi.org/10.1037/0096-1523.30.5.811 Google Scholar
  12. Durgin, F. H., & Li, Z. (2011). Perceptual scale expansion: An efficient angular coding strategy for locomotor space. Attention, Perception & Psychophysics, 73, 1856-1870.  https://doi.org/10.3758/s13414-011-0143-5 CrossRefGoogle Scholar
  13. Durgin, F. H., Li, Z., & Hajnal, A. (2010). Slant perception in near space is categorically biased: Evidence for a vertical tendency. Attention, Perception & Psychophysics, 72, 1875-1889. DOI: https://doi.org/10.3758/APP.72.7.1875 CrossRefGoogle Scholar
  14. Firestone, C., & Keil, F. C. (2016). Seeing the tipping point: Balance perception and visual shape. Journal of Experimental Psychology: General, 145, 872-881.  https://doi.org/10.1037/xge0000151 CrossRefGoogle Scholar
  15. Friedenberg, J., Keating, T., & Liby, B. (2012). Judging the center of human figures: Evidence for dynamic perception. International Journal of Brain and Cognitive Sciences, 1, 30-38.  https://doi.org/10.5923/j.ijbcs.20120104.02 Google Scholar
  16. Hajnal, A., Abdul-Malak, D. T., & Durgin, F. H. (2011). The perceptual experience of slope by foot and by finger. Journal of Experimental Psychology: Human Perception and Performance, 37, 709-719.  https://doi.org/10.1037/a0019950 Google Scholar
  17. Ito, Y., & Gresty, M. A. (1997). Subjective postural orientation and visual vertical during slow pitch tilt for the seated human subject. Aviation, Space, and Environmental Medicine, 68, 3–12.Google Scholar
  18. Jewell, J. G. (1998). The misperception of body tilt: Support for an ecologically-guided multisensory representation of space. Unpublished doctoral dissertation, Kent State University.Google Scholar
  19. Li, Z., & Durgin, F. H. (2009). Downhill slopes look shallower from the edge. Journal of Vision, 9, 1-15.  https://doi.org/10.1167/9.11.6 Google Scholar
  20. Li, Z. & Durgin, F. H. (2010). Perceived slant of binocularly viewed large-scale surfaces: A common model from explicit and implicit measures. Journal of Vision, 10, 1-16.  https://doi.org/10.1167/10.14.13 Google Scholar
  21. McBeath, M. K., Shaffer, D. M., Kaiser, M. K. (1995). How baseball outfielders determine where to run to catch fly balls. Science, 268, 569-573.CrossRefGoogle Scholar
  22. McCollum, G., & Leen, T. K. (1989). Form and exploration of mechanical stability limits in erect stance. Journal of Motor Behavior, 21, 225-244.CrossRefGoogle Scholar
  23. Proffitt, D. R., Bhalla, M., Gossweiler, R., & Midgett, J. (1995). Perceiving geographical slant. Psychonomic Bulletin and Review, 2, 409–428.CrossRefGoogle Scholar
  24. Proffitt, D. R., Creem, S. H., & Zosh, W. D. (2001). Seeing mountains in mole hills: Geographical-slant perception. Psychological Science, 12, 418-423.CrossRefGoogle Scholar
  25. Regia-Corte, T., & Wagman, J. B. (2008). Perception of affordances for standing oinclined surface depends on height of center of mass. Experimental Brain Research, 191, 25-35.  https://doi.org/10.1007/s00221-008-1492-8 CrossRefGoogle Scholar
  26. Riccio, G. E., & Stoffregen, T. A. (1988). Affordances as constraints on the control of stance. Human Movement Science, 7, 265-300.CrossRefGoogle Scholar
  27. Samuel, F., & Kerzel, D. (2011). Is this object balanced or unbalanced? Judgments are on the safe side. Journal of Experimental Psychology: Human Perception and Performance, 37,529-538.  https://doi.org/10.1037/a0018732 Google Scholar
  28. Shaffer, D. M., & Flint M. (2011). Escalating slant: Increasing physiological potential does not reduce slant overestimates. Psychological Science, 22, 209-211.  https://doi.org/10.1177/0956797610393744 CrossRefGoogle Scholar
  29. Shaffer, D. M., Maynor, A. B., Utt, A. L., Briley, B. A. (2009). Lack of conscious awareness of how we navigate to catch baseballs. In Experimental psychology research trends. (E. Hartonek, Ed.) E. B. Hauppauge: Nova Science Publishers, Inc.Google Scholar
  30. Shaffer, D. M., & McBeath, M. K. (2005). Naive beliefs in baseball: Systematic distortion in perceived time of apex for fly balls. Journal of Experimental Psychology: Learning, Memory, and Cognition, 31, 1492-1501.  https://doi.org/10.1037/0278-7393.31.6.1492 Google Scholar
  31. Shaffer, D. M., & McManama, E. (2015). Remote haptic perception of slanted surfaces shows the same scale expansion as visual perception. Attention, Perception, & Psychophysics, 77, 948-952.  https://doi.org/10.3758/s13414-014-0814-0 CrossRefGoogle Scholar
  32. Shaffer, D. M., McManama, E., & Durgin, F. H. (2015). Manual anchoring biases in slant estimation affect matches even for near surfaces. Psychonomic Bulletin & Review, 22, 1665-1670.  https://doi.org/10.3758/s13423-014-0770-7 CrossRefGoogle Scholar
  33. Shaffer, D. M., McManama, E., Swank, C., Williams, M., & Durgin, F. H. (2014). Anchoring in action: Manual estimates of slant are powerfully biased toward initial hand orientation and are correlated with verbal report. Journal of Experimental Psychology: Human Perception and Performance, 40, 1203-1212.  https://doi.org/10.1037/a0036217 Google Scholar
  34. Shaffer, D.M., Taylor, A. (2016). Free hand proprioception is well calibrated to verbal estimates of slanted surfaces. Attention, Perception, & Psychophysics 1255, 1-7.  https://doi.org/10.3758/s13414-016-1255-8 Google Scholar
  35. Shaffer, D. M., Taylor, A., McManama, E., Thomas, A., Smith, E., & Graves, P. (2016). Palm board and verbal estimates of slant reflect the same perceptual representation. Attention, Perception, & Psychophysics, 78, 663- 673.  https://doi.org/10.3758/s13414-015-1029-8 CrossRefGoogle Scholar
  36. Shaffer, D. M., Taylor, A., Thomas, A., Graves, P., Smith, E., & McManama, E. (2016). Pitching people with an inversion table: Estimates of body orientation are tipped as much as those of visual surfaces. Attention, Perception, & Psychophysics, 78, 700-706.  https://doi.org/10.3758/s13414-015-1019-x CrossRefGoogle Scholar
  37. Stoffregen, T. A., & Riccio, G. E. (1988). An ecological theory of orientation and the vestibular system. Psychological Review, 95, 3-14.CrossRefGoogle Scholar
  38. Wang, F. Skubic, M., Abbott, C., & Keller, J. M. (2010). Body sway measurement for fall risk assessment using inexpensive webcams. Conference Proceedings IEEE in Engineering, Medicine and Biology Society, pp. 2225-2229.  https://doi.org/10.1109/IEMBS.2010.5626100.

Copyright information

© The Psychonomic Society, Inc. 2018

Authors and Affiliations

  • Dennis M. Shaffer
    • 1
    Email author
  • Kirsten M. Greer
    • 1
  • Erica Bishop
    • 1
  • Mara Hernandez
    • 1
  • Cage Cramer
    • 1
  • Jackson T. Schaffer
    • 1
  • Brandon Short
    • 1
  • Ky Mattingly
    • 1
  • Meghan Burkhardt
    • 1
  • Echoe Smith
    • 1
  1. 1.Department of PsychologyThe Ohio State University – MansfieldMansfieldUSA

Personalised recommendations