Attention, Perception, & Psychophysics

, Volume 81, Issue 2, pp 504–516 | Cite as

Influence of age and spectral power distribution on mesopic visual sensitivity

  • Eduardo G. Vicente
  • Isabel ArranzEmail author
  • Luis Issolio
  • Beatriz M. Matesanz
  • Alejandro H. Gloriani
  • José A. Menéndez
  • Miguel Rodríguez-Rosa
  • Bárbara Silva
  • Elisa Colombo
  • Santiago Mar
  • Juan A. Aparicio


The ability of the human visual system to detect stimuli at low illumination levels provides awareness of potential risks. The influence of age and spectral power distribution on mesopic spectral sensitivity is analyzed. Two typical light sources are used, a high-pressure sodium lamp (HPS), with a higher content of long wavelengths, and a metal halide lamp (MH), with a higher content of short wavelengths. Two experiments were performed, using a two-channel Maxwellian-view optical system to measure contrast threshold under different experimental conditions. In Experiment 1, three age groups (young, middle-aged and old, n = 2 each), two retinal locations (on-axis and off-axis vision), four background luminances (0.01, 0.07, 0.45, and 3.2 cd/m2), and two photometry systems (photopic and the MES2 systems) were considered. In Experiment 2, contrast threshold measurement was performed with two age groups (young and old, n = 11 each), one retinal location (off-axis vision), one background luminance (0.01 cd/m2), and two photometry systems (photopic and the MES2 systems). In on-axis vision, neither age nor spectral power distribution have an effect on the contrast threshold. In off-axis vision, however, a significant interaction between age and spectral power distribution is obtained, albeit only at 0.01 cd/m2 with an MH lamp. Only at this lowest background luminance was the greater content of short wavelengths of this lamp responsible for higher rod stimulation in off-axis vision, with the subsequent improvement in detection performance in young subjects. However, the effect of diffused light inside the aged eye counteracted the benefits of increased rod sensitivity for the MH lamp.


Aging Visual perception 



The authors acknowledge the Spanish Ministerio de Economía y Competitividad (MINECO) (FIS2016-78037-P). Dr. J. A. Aparicio expresses his personal acknowledgment to the Organización Nacional de Ciegos de España (ONCE) for help.

Dr. Juan Aparicio (Apa) passed away during the revision process of this paper, after a long illness. The other authors want to acknowledge his guidance throughout this research. He had a leading role from the beginning of this project, providing original ideas, setting up the experimental apparatus, and becoming highly involved in the modeling of the data. His thoughtful comments on this paper, until the end of his days, were crucial for the success of the present work.


  1. Artal, P., Ferro, M., Miranda, I., & Navarro, R. (1993). Effects of aging in retinal image quality. Journal of the Optical Society of America A, 10, 1656–1662. CrossRefGoogle Scholar
  2. Ashaki, Y., & Rea, M. (2002). Peripheral detection while driving under a mesopic light level. Journal of the Illuminating Engineering Society, 31, 85–89. CrossRefGoogle Scholar
  3. Baptista, A. M. G., & Nascimento, S. M. C. (2014). Changes in spatial extent and peak double optical density of human macular pigment with age. Journal of the Optical Society of America A, 31, 87–92. CrossRefGoogle Scholar
  4. Barker, F. M., & Brainard, G. C. (1991). The direct spectral transmittance of the excised human lens as function of age (Final Research Report). Washington, DC: Food and Drug Administration.Google Scholar
  5. Barrionuevo, P. A., Matesanz, B. M., Gloriani, A. H., Arranz, I., Issolio, L., Mar, S., & Aparicio J. A. (2018). Effect of eccentricity and light level on the timing of light adaptation mechanisms. Journal of the Optical Society of America A, 35, 144–151. CrossRefGoogle Scholar
  6. Berman, S. M., Jewett, D. L., Bingham, L. R., Nahass, R. M., Perry, F., & Fein, G. (1987). Pupillary size differences under incandescent and high-pressure sodium lamps. Journal of the Illuminating Engineering Society, 16, 3–20. CrossRefGoogle Scholar
  7. Berrio, E., Tabernero, J., & Artal, P. (2010). Optical aberrations and alignment of the eye with age. Journal of Vision, 10, 1–17. CrossRefGoogle Scholar
  8. Boyce, P. R. (2003). Human factors in lighting (2nd ed.). London, UK: Taylor & Francis.CrossRefGoogle Scholar
  9. Boyce, P. R. (2006). Lighting, visibility and the ageing workforce. Lighting Journal, 7, 31–36.Google Scholar
  10. British Standards Institution. (2012). Code of practice for the design of road lighting. London, UK: Author.Google Scholar
  11. Bühren, J., Terzi, E., Bach, M., Wesemann, W., & Kohnen, T. (2006). Measuring contrast sensitivity under different lighting conditions: Comparison of three tests. Optometry and Vision Science, 83, 290–298. CrossRefGoogle Scholar
  12. Chang, Y., Lee, F. L., Chen, S. J., & Chan, S. F. (2002). Optical measurement of human retinal macular pigment and its spatial distribution with age. Medical Physics, 29, 2621–2628. CrossRefGoogle Scholar
  13. Cohen, J. (1977). Statistical power analysis for the behavioral sciences. Cambridge, MA: Academic Press. Google Scholar
  14. Cole, G. G., Kuhn, G., & Skarratt, P. A. (2011). Non-transient luminance changes do not capture. Attention, Perception, & Psychophysics, 73, 1407–1421. CrossRefGoogle Scholar
  15. Commission Internationale de l’Éclairage. (2010). Recommended system for visual performance based mesopic photometry. Vienna, Austria: Author.Google Scholar
  16. Durlak, J. (2009). How to select, calculate, and interpret effect size. Journal of Pediatric Psychology, 34(9), 917–928. CrossRefGoogle Scholar
  17. Fotios, S., & Cheal, C. (2009). Obstacle detection: A pilot study investigating the effects of lamp type, illuminance and age. Lighting Research and Technology, 41, 321–342. CrossRefGoogle Scholar
  18. Fotios, S. A., & Cheal, C. (2007). Lighting for subsidiary streets: Investigation of lamps of different SPD. Part 1—Visual performance. Lighting Research and Technology, 39, 215–232. CrossRefGoogle Scholar
  19. Gloriani, A. H., Matesanz, B. M., Barrionuevo, P. A., Arranz, I., Issolio, L., Mar, S., & Aparicio, J. A. (2016). Influence of background size, luminance and eccentricity on different adaptation mechanisms. Vision Research, 125, 12–22. CrossRefGoogle Scholar
  20. Higgins, K. E., Jaffe, M. J., Caruso, R. C., & Demonasterio, F. M. (1988). Spatial contrast sensitivity: Effects of age, test-retest, and psychophysical method. Journal of the Optical Society of America A, 5, 2173–2180. CrossRefGoogle Scholar
  21. Humes, L. E., Busey, T. A., & Craig, J. (2013). Are age-related changes in cognitive function driven by age-related changes in sensory processing? Attention, Perception, & Psychophysics, 75, 508–524. CrossRefGoogle Scholar
  22. Jaeken, B., Lundström, L., & Artal, P. (2011). Peripheral aberrations in the human eye for different wavelengths: Off-axis chromatic aberration. Journal of the Optical Society of America A, 28, 1871–1879. CrossRefGoogle Scholar
  23. Laming, D. (2013). Visual adaptation—A reinterpretation: Discussion. Journal of the Optical Society of America A, 30, 2066–2078. CrossRefGoogle Scholar
  24. Matesanz, B. M., Issolio, L., Arranz, I., de la Rosa, C., Menéndez, J. A., Mar, S., & Aparicio, J. A. (2011). Temporal retinal sensitivity in mesopic adaptation. Ophthalmic and Physiological Optics, 31, 615–624. CrossRefGoogle Scholar
  25. Ogboso, Y. U., & Bedell, H. E. (1987). Magnitude of lateral chromatic aberration across the retina of the human eye. Journal of the Optical Society of America A, 4, 1666–1672. CrossRefGoogle Scholar
  26. Owsley, C., Sekuler, R., & Siemsen, D. (1983). Contrast sensitivity throughout adulthood. Vision Research, 23, 689–699. CrossRefGoogle Scholar
  27. Pearson, P., Schmidt, L., Ly-Schroeder, E., & Swanson, S.W. (2006). Ganglion cell loss and age-related visual loss: A cortical pooling analysis. Optometry and Vision Science, 83, 444–454. CrossRefGoogle Scholar
  28. Ross, J. E., Clarke, D. D., & Bron, A. J. (1985). Effect of age on contrast sensitivity function: Uniocular and binocular findings. British Journal of Ophthalmology, 69, 51–56. CrossRefGoogle Scholar
  29. Rynders, M. C., Navarro, R., & Losada, M. A. (1998). Objective measurement of the off-axis longitudinal chromatic aberration in the human eye. Vision Research, 38, 513–522. CrossRefGoogle Scholar
  30. Sagawa, K., & Takahashi, Y. (2001). Spectral luminous efficiency as a function of age. Journal of the Optical Society of America A, 18, 2659–2667. CrossRefGoogle Scholar
  31. Spear, P. D. (1993). Neural bases of visual deficits during aging. Vision Research, 33, 2589–2609. CrossRefGoogle Scholar
  32. Strang, N. V., Atchison, D. A., & Woods, R. L. (1999). Effects of defocus and pupil size on human contrast sensitivity. Ophthalmic and Physiological Optics, 19, 415–426. CrossRefGoogle Scholar
  33. Stringham, J. M., García, P. V., Smith, P. A., McLin, L. N., & Foutch, B. K. (2011). Macular pigment and visual performance in glare: Benefits for photostress recovery, disability glare, and visual discomfort. Investigative Ophthalmology & Visual Science, 52, 7406–7415. CrossRefGoogle Scholar
  34. Uttley, J., Fotios, S., & Cheal, C. (2017). Effect of illuminance and spectrum on peripheral obstacle detection by pedestrians. Lighting Research and Technology, 49, 211–227. CrossRefGoogle Scholar
  35. van den Berg, T. J. T. P. (1995). Analysis of intraocular straylight, especially in relation to age. Ophthalmology & Visual Science, 12, 52–59. Google Scholar
  36. van den Berg, T. J. T. P., Ijspeert, J. K., & De Waard, P. W. T. (1991). Dependence of intraocular straylight on pigmentation and light transmission through the ocular wall. Vision Research, 31, 1361–1367. CrossRefGoogle Scholar
  37. Vos, J. J. (2003). On the cause of disability glare and its dependence on glare angle, age and ocular pigmentation. Clinical and Experimental Optometry, 86, 363–370. CrossRefGoogle Scholar
  38. Watson, A. B., & Yellott, J. I. (2012). A unified formula for light-adapted pupil size. Journal of Vision, 10, 1–16. Google Scholar
  39. Whitaker, D., & Elliot, D. B. (1992). Simulating age-related optical changes in the human eye. Documenta Ophthalmologica, 82, 307–316. CrossRefGoogle Scholar
  40. Winter, S., Fathi, M. T., Venkataraman, A. P., Rosén, R., Seidemann, A., Esser, G., ... Unsbo, P. (2015). Effect of induced transverse chromatic aberration on peripheral vision. Journal of the Optical Society of America A, 32, 1764–1771.
  41. Wright, G. A., & Rea, M. S. (1984). Age, a human factor in lighting. Research Reports and Case Studies: Proceedings of the International Conference on Occupational Ergonomics (pp.508–512). Ottawa, Ontario, Canada: Human Factors Association of Canada.Google Scholar
  42. Yang, S. N., Tai, Y. C., Laukkanen, H., & Sheedy, J. E. (2011). Effects of ocular transverse chromatic aberration on peripheral word identification. Vision Research, 51, 2273–2281. CrossRefGoogle Scholar

Copyright information

© The Psychonomic Society, Inc. 2018

Authors and Affiliations

  • Eduardo G. Vicente
    • 1
  • Isabel Arranz
    • 1
    Email author
  • Luis Issolio
    • 2
  • Beatriz M. Matesanz
    • 1
  • Alejandro H. Gloriani
    • 3
  • José A. Menéndez
    • 4
  • Miguel Rodríguez-Rosa
    • 1
  • Bárbara Silva
    • 2
  • Elisa Colombo
    • 2
  • Santiago Mar
    • 1
  • Juan A. Aparicio
    • 1
  1. 1.Departamento de Física Teórica, Atómica y ÓpticaUniversidad de ValladolidValladolidSpain
  2. 2.Departamento de Luminotecnica, Luz y VisiónUniversidad Nacional de Tucumán,-Instituto de Investigación en Luz, Ambiente y Visión, CONICET_UNTTucumánArgentina
  3. 3.Fachbereich PsychologiePhilipps-UniversitätMarburgGermany
  4. 4.Departamento de Estadística e Investigación OperativaUniversidad de ValladolidValladolidSpain

Personalised recommendations