Advertisement

Attention, Perception, & Psychophysics

, Volume 81, Issue 2, pp 442–461 | Cite as

The attentional repulsion effect and relative size judgments

  • Francesca C. FortenbaughEmail author
  • Alexander Sugarman
  • Lynn C. Robertson
  • Michael Esterman
Article
  • 95 Downloads

Abstract

Rapid shifts of involuntary attention have been shown to induce mislocalizations of nearby objects. One pattern of mislocalization, termed the Attentional Repulsion Effect (ARE), occurs when the onset of peripheral pre-cues lead to perceived shifts of subsequently presented stimuli away from the cued location. While the standard ARE configuration utilizes vernier lines, to date, all previous ARE studies have only assessed distortions along one direction and tested one spatial dimension (i.e., position or shape). The present study assessed the magnitude of the ARE using a novel stimulus configuration. Across three experiments participants judged which of two rectangles on the left or right side of the display appeared wider or taller. Pre-cues were used in Experiments 1 and 2. Results show equivalent perceived expansions in the width and height of the pre-cued rectangle in addition to baseline asymmetries in left/right relative size under no-cue conditions. Altering cue locations led to shifts in the perceived location of the same rectangles, demonstrating distortions in perceived shape and location using the same stimuli and cues. Experiment 3 demonstrates that rectangles are perceived as larger in the periphery compared to fixation, suggesting that eye movements cannot account for results from Experiments 1 and 2. The results support the hypothesis that the ARE reflects a localized, symmetrical warping of visual space that impacts multiple aspects of spatial and object perception.

Keywords

Attentional repulsion effect Visual space Size perception Exogenous attention Involuntary attention Pseudoneglect 

Notes

Acknowledgements

We thank Laura Meier for help with data collection. This research was supported in part by the Department of Veterans Affairs. F.C.F has a Career Development award from the Department of Veterans Affairs Rehabilitation Research and Development (1IK2RX002268-01A2). M.S.E. has a Career Development award from the Department of Veterans Affairs Clinical Sciences Research and Development (1IK2CX000706-01A2). The contents within do not represent the views of the Department of Veterans Affairs or the United States government.

References

  1. Abrams, J., Nizam, A., & Carrasco, M. (2012). Isoeccentric locations are not equivalent: The extent of the vertical meridian asymmetry. Vision Research, 52(1), 70-78.  https://doi.org/10.1016/j.visres.2011.10.016 Google Scholar
  2. Anderson, B. (2011). There is no such thing as attention. Frontiers in Psychology, 2, 246.  https://doi.org/10.3389/fpsyg.2011.00246 Google Scholar
  3. Anton-Erxleben, K., & Carrasco, M. (2013). Attentional enhancement of spatial resolution: linking behavioural and neurophysiological evidence. Natural Reviews Neuroscience, 14, 188-200.Google Scholar
  4. Anton-Erxleben, K., Henrich, C., & Treue, S. (2007). Attention changes perceived size of moving visual patterns. Journal of Vision, 7(11), 5, 1-9.  https://doi.org/10.1167/7.11.5 Google Scholar
  5. Baldwin, J., Burleigh, A., Pepperell, R., & Ruta, N. (2016). The perceived size and shape of objects in peripheral vision. i-Perception, 7(4), 2041669516661900.Google Scholar
  6. Bedell, H. E., & Johnson, C. A. (1984). The perceived size of targets in the peripheral and central visual fields. Ophthalmic and Physiological Optics, 4(2), 123-131.Google Scholar
  7. Benwell, C. S. Y., Thut, G., Learmonth, G., & Harvey, M. (2013). Spatial attention: Differential shifts in pseudoneglect direction with time-on-task and initial bias support the idea of observer subtypes. Neuropsychologia, 51(13), 2747-2756.  https://doi.org/10.1016/j.neuropsychologia.2013.09.030 Google Scholar
  8. Bradshaw, J. L., Bradshaw, J. A., Nathan, G., Nettleton, N. C., & Wilson, L. E. (1986). Leftwards error in bisecting the gap between two points: Stimulus quality and hand effects. Neuropsychologia, 24(6), 849-855.Google Scholar
  9. Brainard, D. H. (1997). The psychophysics Toolbox. Spatial Vision, 10(4), 433-436.  https://doi.org/10.1163/156856897X00357 Google Scholar
  10. Carrasco, M. (2011). Visual attention: The past 25 years. Vision Research, 51(13), 1484-1525.  https://doi.org/10.1016/j.visres.2011.04.012 Google Scholar
  11. Carrasco, M., Penpeci-Talgar, C., & Eckstein, M. (2000). Spatial covert attention increases contrast sensitivity across the CSF: Support for signal enhancement. Vision Research, 40, 1203-1215.  https://doi.org/10.1016/S0042-6989(00)00024-9 Google Scholar
  12. Cavezian, C., Valadao, D., Hurwitz, M., Saoud, M., & Danckert, J. (2012). Finding centre: Ocular and fMRI investigations of bisection and landmark task performance. Brain Research, 1437, 89-103.  https://doi.org/10.1016/j.brainres.2011.12.002 Google Scholar
  13. Charles, J., Sahraie, A., & McGeorge, P. (2007). Hemispatial asymmetries in judgment of stimulus size. Perception & Psychophysics, 69(5), 687-698.Google Scholar
  14. Chien, S.-e., Ono, F., & Watanabe, K. (2011). Mislocalization of visual stimuli: Independent effects of static and dynamic attention. PLoS One, 6(12), e28371.Google Scholar
  15. Çiçek, M., Deouell, L. Y., & Knight, R. T. (2009). Brain activity during landmark and line bisection tasks. Frontiers in Human Neuroscience, 3, 1-8.  https://doi.org/10.3389/neuro.09.007.2009 Google Scholar
  16. Connor, C. E., Gallant, J. L., Preddie, D. C., & Van Essen, D. C. (1996). Responses in area V4 depend on the spatial relationship between stimulus and attention. Journal of Neurophysiology, 75(3), 1306-1308.Google Scholar
  17. Connor, C. E., Preddie, D. C., Gallant, J. L., & Van Essen, D. C. (1997). Spatial attention effects in Macaque area V4. Journal of Neuroscience, 17(9), 3201-3214.Google Scholar
  18. Curcio, C. A., & Allen, K. A. (1990). Topography of ganglion cells in human retina. The Journal of Comparative Neurology, 300(1), 5-25.  https://doi.org/10.1002/cne.903000103 Google Scholar
  19. Curcio, C. A., Sloan, K., Packer, O., Hendrickson, A., & Kalina, R. (1987). Distribution of cones in human and monkey retina: Individual variability and radial asymmetry. Science, 236(4801), 579-582.  https://doi.org/10.1126/science.3576186 Google Scholar
  20. Curcio, C. A., Sloan, K. R., Kalina, R. E., & Hendrickson, A. E. (1990). Human photoreceptor topography. The Journal of Comparative Neurology, 292(4), 497-523.  https://doi.org/10.1002/cne.902920402 Google Scholar
  21. Darling, S., Logie, R., & Della Sala, S. (2012). Representational pseudoneglect in line bisection. Psychonomic Bulletin & Review, 19(5), 879-883.  https://doi.org/10.3758/s13423-012-0285-z Google Scholar
  22. David, S. V., Hayden, B. Y., Mazer, J. A., & Gallant, J. L. (2008). Attention to stimulus features shifts spectral tuning of V4 neurons during natural vision. Neuron, 59(3), 509-521.  https://doi.org/10.1016/j.neuron.2008.07.001 Google Scholar
  23. DiGiacomo, A., & Pratt, J. (2012). Misperceiving space following shifts of attention: Determining the locus of the attentional repulsion effect. Vision Research, 64(0), 35-41.  https://doi.org/10.1016/j.visres.2012.05.009 Google Scholar
  24. Druker, M., & Anderson, B. (2010). Spatial probability aids visual stimulus discrimination. Frontiers in Human Neuroscience, 4, 63.  https://doi.org/10.3389/fnhum.2010.00063in Google Scholar
  25. Engbert, R., & Kliegl, R. (2003). Microsaccades uncover the orientation of covert attention. Vision Research, 43(9), 1035-1045.Google Scholar
  26. Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175-191.Google Scholar
  27. Findlay, J. (1981). Local and global influences on saccadic eye movements. In D. F. Fisher, R. A. Monty, & J. W. Senders (Eds.), Eye movements: Cognition and visual perception (pp. 171-179). Hillsdale, New Jersey: Lawrence Erlbaum Associates.Google Scholar
  28. Fischer, B., & Ramsperger, E. (1984). Human express saccades: Extremely short reaction times of goal directed eye movemements. Experimental Brain Research, 57, 191-195.Google Scholar
  29. Fortenbaugh, F. C., Prinzmetal, W., & Robertson, L. C. (2011). Rapid changes in visual-spatial attention distort object shape. Psychonomic Bulletin & Review, 18(2), 287-294.Google Scholar
  30. Fortenbaugh, F. C., & Robertson, L. C. (2011). When here becomes there: Attentional distribution modulates foveal bias in peripheral localization. Attention, Perception, & Psychophysics, 73, 809-828.Google Scholar
  31. Fortenbaugh, F. C., Robertson, L. C., & Esterman, M. (2017). Changes in the distribution of sustained attention alter the perceived structure of visual space. Vision Research, 131, 26-36.  https://doi.org/10.1016/j.visres.2016.12.002 Google Scholar
  32. Fortenbaugh, F. C., Silver, M. A., & Robertson, L. C. (2015a). Individual differences in visual field shape modulate the effects of attention on the lower visual field advantage in crowding. Journal of Vision, 15(2), 19, 11-15.  https://doi.org/10.1167/15.2.19 Google Scholar
  33. Fortenbaugh, F. C., VanVleet, T. M., Silver, M. A., & Robertson, L. C. (2015b). Spatial distortions in localization and midline estimation in hemianopia and normal vision. Vision Research, 111(Part A), 1-12.  https://doi.org/10.1016/j.visres.2015.03.022 Google Scholar
  34. Gozli, D. G., & Pratt, J. (2012). Attentional repulsion effect despite a colour-based control set. Visual Cognition, 20(6), 696-716.Google Scholar
  35. Hafed, Z. M. (2013). Alteration of visual perception prior to microsaccades. Neuron, 77(4), 775-786.Google Scholar
  36. Hafed, Z. M., Chen, C.-Y., & Tian, X. (2015). Vision, perception, and attention through the lens of microsaccades: mechanisms and implications. Frontiers in Systems Neuroscience, 9, 167; 161-116.  https://doi.org/10.3389/fnsys.2015.00167 Google Scholar
  37. Harvey, M., Milner, A. D., & Roberts, R. C. (1995). An investigation of hemispatial neglect using the landmark task. Brain and Cognition, 27(1), 59-78.  https://doi.org/10.1006/brcg.1995.1004 Google Scholar
  38. Hurwitz, M., Valadao, D., & Danckert, J. (2011). Static versus dynamic judgments of spatial extent. Experimental Brain Research, 209(2), 271-286.  https://doi.org/10.1007/s00221-011-2539-9 Google Scholar
  39. Jewell, G., & McCourt, M. E. (2000). Pseudoneglect: A review and meta-analysis of performance factors in line bisection tasks. Neuropsychologia, 38, 93-110.Google Scholar
  40. Jonides, J. (1981). Voluntary versus automatic control over the mind's eye's movement. In J. Long & A. Baddeley (Eds.), Attention and performance IX (pp. 187-204). Hillside, NJ: Lawrence Erlbaum Associates, Inc.Google Scholar
  41. Kosovicheva, A. A., Fortenbaugh, F. C., & Robertson, L. C. (2010). Where does attention go when it moves? Spatial properties and locus of the attentional repulsion effect. Journal of Vision, 10(12), 33, 31-13.  https://doi.org/10.1167/10.12.33 Google Scholar
  42. Kowler, E. (1995). Eye movements. In S. M. Kosslyn & D. N. Osherson (Eds.), Visual cognition (2nd ed.), Vol. 2, pp. 215-265). Cambridge, MA USA, : MIT Press.Google Scholar
  43. Luh, K. E. (1995). Line bisection and perceptual asymmetries in normal individuals: What you see is not what you get. Neuropsychology, 9(4), 435-448.Google Scholar
  44. Mangun, G. R. (1995). Neural mechanisms of visual selective attention. Psychophysiology, 32(1), 4-18.Google Scholar
  45. McCourt, M. E., Garlinghouse, M., & Reuter-Lorenz, P. A. (2005). Unilateral visual cueing and asymmetric line geometry share a common attentional origin in the modulation of pseudoneglect. Cortex, 41(4), 499-511.Google Scholar
  46. McCourt, M. E., Garlinghouse, M., & Slater, J. (2000). Centripetal versus centrifugal bias in visual line bisection: Focusing attention on two hypotheses. Frontiers in Bioscience, 5(D), 58-71.Google Scholar
  47. McCourt, M. E., & Jewell, G. (1999). Visuospatial attention in line bisection: stimulus modulation of pseudoneglect. Neuropsychologia, 37, 843-855.Google Scholar
  48. McCourt, M. E., & Olafson, C. (1997). Cognitive and perceptual influences on visual line bisection: Psychophysical and chronometric analyses of pseudoneglect. Neuropsychologia, 35(3), 369-380.  https://doi.org/10.1016/S0028-3932(96)00143-1 Google Scholar
  49. Milner, A. D., & Harvey, M. (1995). Distortion of size perception in visuospatial neglect. Current Biology, 5(1), 85-89.Google Scholar
  50. Milner, A. D., Harvey, M., & Pritchard, C. L. (1998). Visual size processing in spatial neglect. Experimental Brain Research, 123, 192-200.Google Scholar
  51. Moran, J., & Desimone, R. (1985). Selective attention gates visual processing in the extrastriate cortex. Science, 229(4715), 782-784.  https://doi.org/10.1126/science.4023713 Google Scholar
  52. Nakayama, K., & Mackeben, M. (1989). Sustained and transient components of focal visual attention. Vision Research, 29(11), 1631-1647.  https://doi.org/10.1016/0042-6989(89)90144-2 Google Scholar
  53. Nicholls, M. R., Hughes, G., Mattingley, J., & Bradshaw, J. (2004). Are object- and space-based attentional biases both important to free-viewing perceptual asymmetries? Experimental Brain Research, 154(4), 513-520.  https://doi.org/10.1007/s00221-003-1688-x Google Scholar
  54. Nielsen, K. E., Intriligator, J., & Barton, J. J. S. (1999). Spatial representation in the normal visual field: a study of hemifield line bisection. Neuropsychologia, 37, 267-277.Google Scholar
  55. Orr, C. A., & Nicholls, M. E. R. (2005). The nature and contribution of space- and object-based attentional biases to free-viewing perceptual asymmetries. Experimental Brain Research, 162, 384-393.Google Scholar
  56. Peelen, M. V., Heslenfeld, D. J., & Theeuwes, J. (2004). Endogenous and exogenous attention shifts are mediated by the same large-scale neural network. NeuroImage, 22(2), 822-830.Google Scholar
  57. Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10, 437-442.Google Scholar
  58. Peterson, M. S., Kramer, A. F., & Irwin, D. E. (2004). Covert shifts of attention precede involuntary eye movements. Perception & Psychophysics, 66, 398-405.Google Scholar
  59. Porac, C., Searleman, A., & Karagiannakis, K. (2006). Pseudoneglect: Evidence for both perceptual and attentional factors. Brain and Cognition, 61, 305-311.Google Scholar
  60. Posner, M. I. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology, 32(1), 3-25.Google Scholar
  61. Pratt, J., & Arnott, S. R. (2008). Modulating the attentional repulsion effect. Acta Psychologica, 127(1), 137-145.Google Scholar
  62. Pratt, J., & Turk-Browne, N. B. (2003). The attentional repulsion effect in perception and action. Experimental Brain Research, 152(3), 376-382.  https://doi.org/10.1007/s00221-003-1557-7 Google Scholar
  63. Rolfs, M., Kliegl, R., & Engbert, R. (2008). Toward a model of microsaccade generation: The case of microsaccadic inhibition. Journal of Vision, 8(11), 5.  https://doi.org/10.1167/8.11.5 Google Scholar
  64. Rosen, A. C., Rao, S. M., Caffarra, P., Scaglioni, A., Bobholz, J. A., Woodley, S. J., . . . Binder, J. R. (1999). Neural basis of endogenous and exogenous spatial orienting: a functional MRI study. Journal of Cognitive Neuroscience, 11(2), 135-152.Google Scholar
  65. Rueckert, L., Deravanesian, A., Baboorian, D., Lacalamita, A., & Repplinger, M. (2002). Pseudoneglect and the cross-over effect. Neuropsychologia, 40(2), 162-173.  https://doi.org/10.1016/S0028-3932(01)00082-3 Google Scholar
  66. Smith, A. T., Singh, K. D., Williams, A., & Greenlee, M. (2001). Estimating receptive field size from fMRI data in human striate and extrastriate visual cortex. Cerebral Cortex, 11(12), 1182-1190.Google Scholar
  67. Suzuki, S., & Cavanagh, P. (1997). Focused attention distorts visual space: An attentional repulsion effect. Journal of Experimental Psychology: Human Perception & Performance, 23(2), 443-463.  https://doi.org/10.1037/0096-1523.23.2.443 Google Scholar
  68. Toba, M.-N., Cavanagh, P., & Bartolomeo, P. (2011). Attention biases the perceived midpoint of horizontal lines. Neuropsychologia, 49(2), 238-246.  https://doi.org/10.1016/j.neuropsychologia.2010.11.022 Google Scholar
  69. Womelsdorf, T., Anton-Erxleben, K., & Treue, S. (2008). Receptive field shift and shrinkage in macaque middle temporal area through attentional gain modulation. The Journal of Neuroscience, 28(36), 8934-8944.Google Scholar
  70. Wu, J., Yan, T., Zhang, Z., Jin, F., & Guo, Q. (2012). Retinotopic mapping of the peripheral visual field to human visual cortex by functional magnetic resonance imaging. Human Brain Mapping, 33(7), 1727-1740.Google Scholar
  71. Yeshurun, Y., & Carrasco, M. (1998). Attention improves or impairs visual performance by enhancing spatial resolution. Nature, 396, 72-75.  https://doi.org/10.1038/23936 Google Scholar
  72. Yuval-Greenberg, S., Merriam, E. P., & Heeger, D. J. (2014). Spontaneous microsaccades reflect shifts in covert attention. The Journal of Neuroscience, 34(41), 13693-13700.Google Scholar

Copyright information

© This is a U.S. government work and its text is not subject to copyright protection in the United States; however, its text may be subject to foreign copyright protection  2018

Authors and Affiliations

  • Francesca C. Fortenbaugh
    • 1
    • 2
    Email author
  • Alexander Sugarman
    • 1
  • Lynn C. Robertson
    • 3
  • Michael Esterman
    • 1
    • 4
  1. 1.GRECC & Research Services, Department of Veterans AffairsVA Boston Healthcare SystemBostonUSA
  2. 2.Department of PsychiatryHarvard Medical SchoolBostonUSA
  3. 3.Department of PsychologyUniversity of CaliforniaBerkeleyUSA
  4. 4.Department of PsychiatryBoston University School of MedicineBostonUSA

Personalised recommendations