Advertisement

Attention, Perception, & Psychophysics

, Volume 81, Issue 1, pp 281–295 | Cite as

Vection strength increases with simulated eye-separation

  • Stephen Palmisano
  • Rodney G. Davies
  • Kevin R. Brooks
Article
  • 81 Downloads

Abstract

Research has previously shown that adding consistent stereoscopic information to self-motion displays can improve the vection in depth induced in physically stationary observers. In some past studies, the simulated eye-separation was always close to the observer’s actual eye-separation, as the aim was to examine vection under ecological viewing conditions that provided consistent binocular and monocular self-motion information. The present study investigated whether large discrepancies between the observer’s simulated and physical eye-separations would alter the vection-inducing potential of stereoscopic optic flow (either helping, hindering, or preventing the induction of vection). Our self-motion displays simulated eye-separations of 0 cm (the non-stereoscopic control), 3.25 cm (reduced from normal), 6.5 cm (approximately normal), and 13 cm (exaggerated relative to normal). The rated strength of vection in depth was found to increase systematically with the simulated eye-separation. While vection was the strongest in the 13-cm condition (stronger than even the 6.5-cm condition), the 3.25-cm condition still produced superior vection to the 0-cm control (i.e., it had significantly stronger vection ratings and shorter onset latencies). Perceptions of scene depth and object motion-in-depth speed were also found to increase with the simulated eye-separation. As expected based on the findings of previous studies, correlational analyses suggested that the stereoscopic advantage for vection (found for all of our non-zero eye-separation conditions) was due to the increase in perceived motion-in-depth.

Keywords

Stereopsis Vection Optic flow Binocular vision Motion-in-depth S3D 

Notes

Acknowledgements

This research was supported by an internal University of Wollongong Faculty of Social Sciences Seed Grant awarded to SP.

Supplementary material

13414_2018_1609_MOESM1_ESM.avi (19.1 mb)
Supplementary Movie 1 (ComboMovieHalfSize.avi). This demonstration (which simultaneously plays four different movies) was designed to be viewed while wearing anaglyph glasses. It shows scaled versions of the four different simulated viewing conditions used in this study: 0-cm (Top Left), 3.25-cm (Top Right), 6.5-cm (Bottom Left) and 13-cm (Bottom Right). The aim of placing these movies next to each other in the demonstration was illustrate their relative differences in disparity range, changing-disparities-over-time, and interocular-velocity-differences. The monocular motion signals in each movie simulate the same speed of forwards self-motion in depth. (AVI 19586 kb)

References

  1. Akka, R. (1993). Utilizing 6D head-tracking data for stereoscopic computer graphics perspective transformations. Proceedings of the SPIE - The International Society for Optical Engineering, Stereoscopic Displays and Applications IV, 1915, 147-154.Google Scholar
  2. Allison, R. S., Ash, A., & Palmisano, S. (2014). Binocular contributions to linear vertical vection. Journal of Vision, 14(12):5, 1–23. doi: https://doi.org/10.1167/14.12.5 Google Scholar
  3. Allison, R. S., Gillam, B. J., & Vecellio, E. (2009). Binocular depth discrimination and estimation beyond interaction space. Journal of Vision, 9(1):10, 1–14. doi: https://doi.org/10.1167/9.1.10 Google Scholar
  4. Allison, R. S., & Howard, I.P. (2011). Stereoscopic motion-in-depth. In L. Harris & M. Jenkin (Eds.), Vision in 3D environments (pp. 163–186). Cambridge, UK: Cambridge University Press.Google Scholar
  5. Allison, R. S., Howard, I. P., & Howard, A. (1998). Motion-in-depth can be elicited by dichoptically uncorrelated textures. Perception, 27(Suppl), 46.Google Scholar
  6. Allison, R. S., & Wilcox, L. M. (2015). Perceptual tolerance to stereoscopic 3D image distortion. ACM Transactions on Applied Perception (TAP), 12(3), 10. doi: https://doi.org/10.1145/2770875 Google Scholar
  7. Andersen, G. J., & Braunstein, M. L. (1985). Induced self-motion in central vision. Journal of Experimental Psychology: Human Perception and Performance, 11(2), 122–132.Google Scholar
  8. Apthorp, D., & Palmisano, S. (2014). The role of perceived speed in vection: does perceived speed modulate the jitter and oscillation advantages? PLoS ONE, 9(3): e92260. doi: https://doi.org/10.1371/journal.pone.0092260 Google Scholar
  9. Braunstein, M. L., & Andersen, G. J. (1981). Velocity gradients and relative depth perception. Perception & Psychophysics, 29, 145-155.Google Scholar
  10. Brooks, K. R. (2001). Stereomotion speed perception is contrast dependent. Perception, 30(6), 725-731. doi: https://doi.org/10.1068/p314 Google Scholar
  11. Brooks, K. R. (2002a). Interocular velocity difference contributes to stereomotion speed perception. Journal of Vision, 2(3):2, 218–231. doi: https://doi.org/10.1167/2.3.2 Google Scholar
  12. Brooks, K. R. (2002b). Monocular motion adaptation affects the perceived trajectory of stereomotion. Journal of Experimental Psychology: Human Perception & Performance, 28(6), 1470–1482.Google Scholar
  13. Brooks, K. R., & Gillam, B. J. (2006). The swinging doors of perception: Stereomotion without binocular matching. Journal of Vision, 6(7):2, 685–695. doi: https://doi.org/10.1167/6.7.2 Google Scholar
  14. Brooks, K. R., & Gillam, B. J. (2007). Stereomotion perception for a monocularly camouflaged stimulus. Journal of Vision, 7(13):1, 1–14. doi: https://doi.org/10.1167/7.13.1 Google Scholar
  15. Brooks, K. R. & Mather, G. (2000). Perceived speed of motion in depth is reduced in the periphery. Vision Research, 40(25), 3507-3516. doi: https://doi.org/10.1016/S0042-6989(00)00095-X Google Scholar
  16. Brooks, K. R., & Rafat, M. E. (2015). Simulation of driving in low-visibility conditions: Does stereopsis improve speed perception? Perception, 44(2), 145-156. doi: https://doi.org/10.1068/p7779 Google Scholar
  17. Brooks, K. R., & Stone, L. S. (2004). Stereomotion speed perception: Contributions from both changing disparity and interocular velocity difference over a range of relative disparities. Journal of Vision, 4(12):6, 1061–1079. doi: https://doi.org/10.1167/4.12.6 Google Scholar
  18. Brooks, K. R., & Stone, L. S. (2006a). Stereomotion suppression and the perception of speed: accuracy and precision as a function of 3D trajectory. Journal of Vision, 6(11):6, 1214-1223. doi: https://doi.org/10.1167/6.11.6 Google Scholar
  19. Brooks, K. R., & Stone, L. S. (2006b). Spatial scale of stereomotion speed processing. Journal of Vision, 6(11):9, 1257–1266. doi: https://doi.org/10.1167/6.11.9 Google Scholar
  20. Cumming, B. G., & Parker, A. J. (1994). Binocular mechanisms for detecting motion-in-depth. Vision Research, 34, 483-496.Google Scholar
  21. Devernay, F., & Beardsley, P. (2010). Stereoscopic cinema. In R. Ronfard, & G. Taubin (Eds.), Image and geometry processing for 3-D cinematography (pp. 11–51). Berlin, Germany: Springer. Doi: https://doi.org/10.1007/978-3-642-12392-4_1 Google Scholar
  22. Ernst, M. O., & Banks, M. S. (2002). Humans integrate visual and haptic information in a statistically optimal fashion. Nature, 415 (6870), 429. doi: https://doi.org/10.1038/415429a Google Scholar
  23. Fetsch, C. R., DeAngelis, G. C., & Angelaki, D. E. (2010). Visual–vestibular cue integration for heading perception: applications of optimal cue integration theory. European Journal of Neuroscience, 31(10), 1721-1729. doi: https://doi.org/10.1111/j.1460-9568.2010.07207.x Google Scholar
  24. Gibson, J. J. (1950). The perception of the visual world. Boston, MA: Houghton Mifflin.Google Scholar
  25. Gibson, J. J., Olum, P., & Rosenblatt, F. (1955). Parallax and perspective during aircraft landings. The American journal of psychology, 68(3), 372–385.Google Scholar
  26. Gordon, D. A. (1965). Static and dynamic visual fields in human space perception. Journal of the Optical Society of America, 55, 1296-1303.Google Scholar
  27. Gray, R., & Regan, D. (1996). Cyclopean motion perception produced by oscillations of size, disparity and location. Vision Research, 36, 655-665.Google Scholar
  28. Harris, J. M., Nefs, H. T., & Grafton, C. E. (2008). Binocular vision and motion-in-depth. Spatial Vision, 21, 531–547.  https://doi.org/10.1163/156856808786451462 Google Scholar
  29. Harris, J. M., & Watamaniuk, S. N. J. (1995). Speed discrimination of motion-in-depth using binocular cues. Vision Research, 35, 885–896.Google Scholar
  30. Heeger, D. J., & Jepson, A. (1990). Visual perception of three-dimensional motion. Neural computation, 2, 129-137.  https://doi.org/10.1162/neco.1990.2.2.129
  31. Howard, I. P. (2008). Vergence modulation as a cue to movement in depth. Spatial Vision, 21(6), 581-592. doi: https://doi.org/10.1163/156856808786451417 Google Scholar
  32. Howard, I. P., Allison, R.S., & Howard, A. (1998). Depth from moving uncorrelated random dot displays. Investigative Ophthalmology and Visual Science, 31(Suppl), 669.Google Scholar
  33. Howard, I. P., & Rogers, B. J. (2012). Perceiving in depth: Vol. 2. Stereoscopic vision. Oxford, UK: Oxford University Press.Google Scholar
  34. Koenderink, J. J. (1990). Some theoretical aspects of optic flow. In R. Warren & A.H. Wertheim (Eds.), The perception and control of self-motion (Chapter 3), Hillsdale New Jersey: Erlbaum.Google Scholar
  35. Koenderink, J. J., & van Doorn, A. J. (1981). Exterospecific component of the motion parallax field. Journal of the Optical Society of America, 71(8), 953-957. doi: https://doi.org/10.1364/JOSA.71.000953 Google Scholar
  36. Koenderink, J. J., & van Doorn, A. J. (1987). Facts on optic flow. Biological Cybernetics, 56, 247-254.Google Scholar
  37. Matthews, H., Hill, H., & Palmisano, S. (2011). Binocular disparity magnitude affects perceived depth magnitude despite inversion of depth order. Perception, 40, 975-988. doi: https://doi.org/10.1068/p6915 Google Scholar
  38. Matthews, H., Hill, H., & Palmisano, S. (2012). Independent effects of local and global binocular disparity on the perceived convexity of stereoscopically presented faces in scenes. Perception, 41, 168-174. doi: https://doi.org/10.1068/p7187 Google Scholar
  39. Landy, M. S., Maloney, L. T., Johnston, E. B., & Young, M. (1995). Measurement and modeling of depth cue combination: In defense of weak fusion. Vision research, 35(3), 389-412.Google Scholar
  40. Lee, D. N. (1980). The optic flow field: the foundation of vision. Philosophical Translations of the Royal Society of London B, 290, 169-179.Google Scholar
  41. Li, J., Barkowsky, M., & Le Callet, P. (2014). Visual discomfort of stereoscopic 3D videos: Influence of 3D motion. Displays, 35, 49-57. doi: https://doi.org/10.1109/TIP.2014.2303640 Google Scholar
  42. Larish, J. F., & Flach, J. M. (1990). Sources of optical information useful for perception of speed of rectilinear self-motion. Journal of Experimental Psychology: Human Perception and Performance, 16, 295-302.Google Scholar
  43. Longuet-Higgins, H. C., & Prazdny, K. (1980). The interpretation of a moving retinal image. Proceedings of the Royal Society of London B, 208, 385-397.Google Scholar
  44. Lorch, R. F., & Myers, J. L. (1990). Regression analyses of repeated measures data in cognitive research. Journal of Experimental Psychology: Learning, Memory, and Cognition, 16(1), 149-157.Google Scholar
  45. Lowther, K., & Ware, C. (1996). Vection with large screen 3D imagery. In Michael J. Tauber (Ed.), Conference companion on human factors in computing systems (pp. 233–234). New York: ACM,  https://doi.org/10.1145/257089.257297
  46. Nakamura, S. (2016). Vection induced by illusory miniaturization of moving pictures. Nihon Fukushi University School Education Center bulletin, (4), 31-38.Google Scholar
  47. Nakayama, K., & Loomis, J. M. (1974). Optical velocity patterns, velocity-sensitive neurons, and space perception: a hypothesis. Perception, 3, 63-80.Google Scholar
  48. Nefs, H. T., O’Hare, L., & Harris, J. M. (2010). Two independent mechanisms for motion-in-depth perception: Evidence from individual differences. Frontiers in Psychology, 1:155.  https://doi.org/10.3389/fpsyg.2010.00155 Google Scholar
  49. Palmisano, S. (1996). Perceiving self-motion-in-depth: The role of stereoscopic motion and changing-size cues. Perception & Psychophysics, 58(8), 1168–1176.  https://doi.org/10.3758/BF03207550 Google Scholar
  50. Palmisano, S. (2002). Consistent stereoscopic information increases the perceived speed of vection in depth. Perception, 31(4), 463–480.  https://doi.org/10.1068/p3321 Google Scholar
  51. Palmisano, S., Allison, R. S., Schira, M. M., & Barry, R. J. (2015). Future challenges for vection research: definitions, functional significance, measures, and neural bases. Frontiers in Psychology, 6:193, 1-15.  https://doi.org/10.3389/fpsyg.2015.00193 Google Scholar
  52. Palmisano, S., Gillam, B., Govan, D.G., Allison, R.S., & Harris, J.M. (2010). Stereoscopic perception of real depths at large distances. Journal of Vision, 10(6):19, 1-16.  https://doi.org/10.1167/10.6.19 Google Scholar
  53. Palmisano, S., Hill, H., & Allison, R. S. (2016b). The nature and timing of tele-pseudoscopic experiences. i-Perception, 7(1), 1-24.  https://doi.org/10.1177/2041669515625793 Google Scholar
  54. Palmisano, S., Summersby, S., Davies, R. G., & Kim J. (2016a). Stereoscopic advantages for vection induced by radial, circular and spiral optic flow. Journal of Vision, 16(14):7, 1-19.  https://doi.org/10.1167/16.14.7 Google Scholar
  55. Perrone, J. A. (2018). Visual–vestibular estimation of the body’s curvilinear motion through the world: A computational model. Journal of Vision, 18(4):1, 1–32,  https://doi.org/10.1167/18.4.1.Google Scholar
  56. Regan, D. (1993). Binocular correlates of the direction of motion-in-depth. Vision Research, 33(16), 2359–2360.Google Scholar
  57. Rohde, M., van Dam, L. C., & Ernst, M. O. (2016). Statistically optimal multisensory cue integration: a practical tutorial. Multisensory research, 29(4-5), 279-317.  https://doi.org/10.1163/22134808-00002510 Google Scholar
  58. Rokers, B., Cormack, L. K., & Huk, A. C. (2008). Strong percepts of motion through depth without strong percepts of position in depth. Journal of Vision, 8(4):6, 1– 10.  https://doi.org/10.1167/8.4.6 Google Scholar
  59. Sakano, Y., Allison, R. S., & Howard, I. P. (2012). Motion aftereffect in depth based on binocular information. Journal of Vision, 12(1):11, 1– 15.  https://doi.org/10.1167/12.1.11 Google Scholar
  60. Sakano, Y., & Allison, R. S. (2014). Aftereffect of motion-in-depth based binocular cues: Effects of adaptation duration, interocular correlation, and temporal correlation. Journal of Vision, 14(8):21, 1–14.  https://doi.org/10.1167/14.8.21 Google Scholar
  61. Seya, Y., & Shinoda, H. (2018) Relationship between vection and motion perception in depth. Attention, Perception, & Psychophysics, in press.  https://doi.org/10.3758/s13414-018-1567-y
  62. Shioiri, S., Saisho, H., & Yaguchi, H. (2000). Motion-in-depth based on inter-ocular velocity differences. Vision Research, 40(19), 2565–2572.  https://doi.org/10.1016/S0042-6989(00)00130-9 Google Scholar
  63. Speranza, F., Tam, W. J., Renaud, R., & Hur, N. (2006). Effect of disparity and motion on visual comfort of stereoscopic images. Proceedings of the SPIE - Stereoscopic displays and virtual reality systems XIII, 6055, (p. 60550B).  https://doi.org/10.1117/12.640865 Google Scholar
  64. Stevens, S. S. (1957). On the psychophysical law. Psychological Review, 64, 153-181.Google Scholar
  65. Wardle, S. G., & Alais, D. (2013). Evidence for speed sensitivity to motion-in-depth from binocular cues. Journal of Vision, 13(1):17, 1–16.  https://doi.org/10.1167/13.1.17 Google Scholar
  66. Ware, C. (1995). Dynamic stereo displays. Proceedings of the SIGCHI conference on Human factors in computing systems, (pp. 310-316). ACM Press/Addison-Wesley Publishing Co.  https://doi.org/10.1145/223904.223944
  67. Ware, C., Gobrecht, C., & Paton, M. A. (1998). Dynamic adjustment of stereo display parameters. IEEE Transations on systems, man, and cybernetics - Part A: Systems and Humans, 28(1), 56-65.  https://doi.org/10.1109/3468.650322 Google Scholar
  68. Wartell, Z., Hodges, L. F., & Ribarsky, W. (1999, July). Balancing fusion, image depth and distortion in stereoscopic head-tracked displays. Proceedings of the 26th annual conference on Computer graphics and interactive techniques (pp. 351-358). ACM Press/Addison-Wesley Publishing Co.  https://doi.org/10.1145/311535.311587
  69. Welchman, A. E., Harris, J. M., & Brenner, E. (2009). Extra-retinal signals support the estimation of 3D motion. Vision research, 49(7), 782-789.  https://doi.org/10.1016/j.visres.2009.02.014 Google Scholar
  70. Wilcox, L. M., & Allison, R. S. (2009). Coarse-fine dichotomies in human stereopsis. Vision research, 49(22), 2653-2665.Google Scholar
  71. Woods, A.J., Docherty, T., & Koch, R. (1993). Image distortions in stereoscopic video systems. In Stereoscopic Displays and Applications IV, Proceedings of SPIE: (vol. 1915, pp. 36-49);  https://doi.org/10.1117/12.157041
  72. Wolfe, J. M., & Held, R. (1980). Cyclopean stimulation can influence sensations of self-motion in normal and stereoblind subjects. Perception & Psychophysics, 28(2), 139-142.Google Scholar
  73. Zone, R. (2005). 3-D filmmakers: Conversations with creators of stereoscopic motion pictures (No. 119 in the Scarecrow Filmmakers Series). Lanham, Maryland: Scarecrow Press 1.2, 2.3, 3.2.Google Scholar

Copyright information

© The Psychonomic Society, Inc. 2018

Authors and Affiliations

  • Stephen Palmisano
    • 1
  • Rodney G. Davies
    • 1
  • Kevin R. Brooks
    • 2
    • 3
  1. 1.School of Psychology, Faculty of Social SciencesUniversity of WollongongWollongongAustralia
  2. 2.Department of Psychology and Perception and Action Research Centre, Faculty of Human SciencesMacquarie UniversitySydneyAustralia
  3. 3.ARC Centre of Excellence in Cognition and its DisordersMacquarie UniversitySydneyAustralia

Personalised recommendations