Advertisement

Trypophobic images induce oculomotor capture and inhibition

  • Risako Shirai
  • Hayaki Banno
  • Hirokazu Ogawa
Article

Abstract

It is known that unpleasant images capture our attention. However, the causes of the emotions evoked by these images can vary. Trypophobia is the fear of clustered objects. A recent study claimed that this phobia is elicited by the specific power spectrum of such images. In the present study, we measured saccade trajectories to examine how trypophobic images possessing a characteristic power spectrum affect visual attention. The participants’ task was to make a saccade in the direction that was indicated by a cue. Four irrelevant images with different emotional content were presented as periphery distractors at 0 ms, 150 ms, and 450 ms in terms of cue-image onset asynchrony. The irrelevant images consisted of trypophobic, fearful, or neutral scenes. The presence of saccade trajectory deviations induced by trypophobic images suggest that intact trypophobic images oriented attention to their location. Moreover, when the images were phase scrambled, the saccade curved away from the trypophobic images, suggesting that trypophobic power spectra also triggered attentional capture, which was weak and then led to inhibition. These findings suggest that not only the power spectral characteristics but also the gist of a trypophobic image affect attentional deployment.

Keywords

Trypophobia Saccade trajectory Attention Emotion 

References

  1. American Psychiatric Association (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Washington, DC: Author.Google Scholar
  2. Bannerman, R. L., Hibbard, P. B., Chalmers, K., & Sahraie, A. (2012). Saccadic latency is modulated by emotional content of spatially filtered face stimuli. Emotion, 12(6), 1384–1392. doi: https://doi.org/10.1037/a0028677 CrossRefGoogle Scholar
  3. Banno, H., & Saiki, J. (2015). The use of higher-order statistics in rapid object categorization in natural scenes. Journal of Vision, 15(2), 1–20. doi: https://doi.org/10.1167/15.2.4 CrossRefGoogle Scholar
  4. Bar-Haim, Y., Lamy, D., Pergamin, L., Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2007). Threat-related attentional bias in anxious and nonanxious individuals: A meta-analytic study. Psychological Bulletin, 133(1), 1–24. doi: https://doi.org/10.1037/0033-2909.133.1.1 CrossRefGoogle Scholar
  5. Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10, 433–436.CrossRefGoogle Scholar
  6. Cole, G. G., & Wilkins, A. J. (2013). Fear of holes. Psychological Science, 24(10), 1–6. doi: https://doi.org/10.1177/0956797613484937 CrossRefGoogle Scholar
  7. Conlon, E., Lovegrove, W., Hine, T., Chekaluk, E., Piatek, K., & Hayes-Williams, K. (1998). The effects of visual discomfort and pattern structure on visual search. Perception, 27(1), 21–33. doi:  https://doi.org/10.1068/p270021 CrossRefGoogle Scholar
  8. Devue, C., Belopolsky, A. V., & Theeuwes, J. (2011). The role of fear and expectancies in capture of covert attention by spiders. Emotion, 11(4), 768–775. doi: https://doi.org/10.1037/a0023418 CrossRefGoogle Scholar
  9. Fernandez, D., & Wilkins, A. J. (2008). Uncomfortable images in art and nature. Perception, 37, 1098–1113. doi: https://doi.org/10.1068/p5814 CrossRefGoogle Scholar
  10. Field, D. J., & Brady, N. (1997). Visual sensitivity, blur and the sources of variability in the amplitude spectra of natural scenes. Vision Research, 37, 3367–3383. doi: https://doi.org/10.1016/S0042-6989(97)00181-8 CrossRefGoogle Scholar
  11. Fox, E., Russo, R., Bowles, R., & Dutton, K. (2001). Do threatening stimuli draw or hold visual attention in subclinical anxiety? Journal of Experimental Psychology: General, 130(4), 681–700.CrossRefGoogle Scholar
  12. Gao, X., LoBue, V., Irving, J., & Harvey, T. (2017). The effect of spatial frequency information and visual similarity in threat detection. Cognition and Emotion, 31(5), 912–922. doi: https://doi.org/10.1080/02699931.2016.1180280 CrossRefGoogle Scholar
  13. Godijn, R., & Theeuwes, J. (2004). The relationship between inhibition of return and saccade trajectory deviations. Journal of Experimental Psychology: Human Perception and Performance, 30, 538–554. doi: https://doi.org/10.1037/0096-1523.30.3.538 PubMedGoogle Scholar
  14. Hegde, J. (2008). Time course of visual perception: Coarse-to-fine processing and beyond. Progress in Neurobiology, 84(4), 405–439. doi: https://doi.org/10.1016/j.pneurobio.2007.09.001 CrossRefGoogle Scholar
  15. Kauffmann, L., Ramanoël, S., & Peyrin, C. (2014). The neural bases of spatial frequency processing during scene perception. Frontiers in Integrative Neuroscience, 8. doi: https://doi.org/10.3389/fnint.2014.00037
  16. Kissler, J., & Keil, A. (2008). Look—Don’t look! How emotional pictures affect pro- and anti-saccades. Experimental Brain Research, 118, 214–222.  https://doi.org/10.1007/s00221-008-1358-0 CrossRefGoogle Scholar
  17. Kovesi, P. (2000). Phase congruency: A low-level image invariant. Psychological Research, 64(2), 136–148. doi: https://doi.org/10.1007/s004260000024 CrossRefGoogle Scholar
  18. Kovesi, P. (2003). Phase congruency detects corners and edges. In C. Sun, H. Talbot, S. Ourselin, & T. Adriaansen (Eds.), Proceedings of the VIIth Digital Image Computing: Techniques and Applications Conference (pp. 309–318). Sydney, Australia: DICTA.Google Scholar
  19. Lang, P. J., Bradley, M. M., & Cuthbert, B. N. (2005). International affective picture system (IAPS): Digitized photographs, instruction manual and affective ratings (Technical Report A-6). Gainesville: University of Florida.Google Scholar
  20. Li, F. F., VanRullen, R., Koch, C., & Perona, P. (2002). Rapid natural scene categorization in the near absence of attention. Proceedings of the National Academy of Sciences, 99(14), 9596–9601. doi: https://doi.org/10.1073/pnas.092277599 CrossRefGoogle Scholar
  21. LoBue, V., & DeLoache, J. S. (2007). Detecting the snake in the grass: Attention to fear-relevant stimuli by adults and young children. Psychological Science, 19(3), 284–289. doi: https://doi.org/10.1111/j.1467-9280.2008.02081.x CrossRefGoogle Scholar
  22. Marks, I. M., & Nesse, R. M. (1994). Fear and fitness: An evolutionary analysis of anxiety disorders. Ethology and Sociobiology, 15(5), 247–261. doi: https://doi.org/10.1016/0162-3095(94)90002-7 CrossRefGoogle Scholar
  23. Merckelbach, H., & Muris, P. (1997). The etiology of childhood spider phobia. Behaviour Research and Therapy, 35(11), 1031–1034. doi: https://doi.org/10.1016/S0005-7967(97)00054-5 CrossRefGoogle Scholar
  24. McPeek, R. M., Han, J. H., & Keller, E. L. (2003). Competition between saccade goals in the superior colliculus produces saccade curvature. Journal of Neurophysiology, 89(5), 2577–2590. doi: https://doi.org/10.1152/jn.00657.2002 CrossRefGoogle Scholar
  25. McPeek, R. M., Skavenski, A. A., & Nakayama, K. (2000). Concurrent processing of saccades in visual search. Vision Research, 40(18), 2499–2516. doi: https://doi.org/10.1016/S0042-6989(00)00102-4 CrossRefGoogle Scholar
  26. McSorley, E., Cruickshank, A. G., & Inman, L. A. (2009). The development of the spatial extent of oculomotor inhibition. Brain Research, 1298, 92–98. doi: https://doi.org/10.1016/j.brainres.2009.08.081 CrossRefGoogle Scholar
  27. McSorley, E., Haggard, P., & Walker, R. (2006). Time course of oculomotor inhibition revealed by saccade trajectory modulation. Journal of Neurophysiology, 96(3), 1420–1424. doi: https://doi.org/10.1152/jn.00315.2006 CrossRefGoogle Scholar
  28. Nummenmaa, L., Hyönä, J., & Calvo, M. G. (2006). Eye movement assessment of selective attentional capture by emotional pictures. Emotion, 6(2), 257–268. doi: https://doi.org/10.1037/1528-3542.6.2.257 CrossRefGoogle Scholar
  29. Nummenmaa, L., Hyönä, J., & Calvo, M. G. (2009). Emotional scene content drives the saccade generation system reflexively. Journal of Experimental Psychology: Human Perception and Performance, 35, 305–323. doi: https://doi.org/10.1037/a0013626 PubMedGoogle Scholar
  30. O’Hare, L., & Hibbard, P. B. (2011). Spatial frequency and visual discomfort. Vision Research, 51, 1767–1777. doi: https://doi.org/10.1016/j.visres.2011.06.002 CrossRefGoogle Scholar
  31. Öhman, A., Flykt, A., & Esteves, F. (2001a). Emotion drives attention: Detecting the snake in the grass. Journal of Experimental Psychology: General, 130(2), 466–478. doi: https://doi.org/10.1037//0096-3445.130.3.466 CrossRefGoogle Scholar
  32. Öhman, A., Lundqvist, D., & Esteves, F. (2001b). The face in the crowd revisited: A threat advantage with schematic stimuli. Journal of Personality and Social Psychology, 80(3), 381–396. doi: https://doi.org/10.1037/0022-3514.80.3.381 CrossRefGoogle Scholar
  33. Peirce, J. W. (2007). PsychoPy—Psychophysics software in Python. Journal of Neuroscience Methods, 162(1/2), 8–13. doi: https://doi.org/10.1016/j.jneumeth.2006.11.017 CrossRefGoogle Scholar
  34. Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10, 437–442. doi: https://doi.org/10.1163/156856897X00366 CrossRefGoogle Scholar
  35. Petrova, K., & Wentura, D. (2012). Upper–lower visual field asymmetries in oculomotor inhibition of emotional distractors. Vision Research, 62, 209–219. doi: https://doi.org/10.1016/j.visres.2012.04.010 CrossRefGoogle Scholar
  36. Russell, J. A., Weiss, A., & Mendelsohn, G. A. (1989). Affect Grid: A single-item scale of pleasure and arousal. Journal of Personality and Social Psychology, 57(3), 493–502. doi: https://doi.org/10.1037/0022-3514.57.3.493 CrossRefGoogle Scholar
  37. Schmidt, L. J., Belopolsky, A. V., & Theeuwes, J. (2012). The presence of threat affects saccade trajectories. Visual Cognition, 20(3), 284–299. doi: https://doi.org/10.1080/13506285.2012.658885 CrossRefGoogle Scholar
  38. Thorpe, S., Fize, D., & Marlot, C. (1996). Speed of processing in the human visual system. Nature, 381(6582), 520–522. doi: https://doi.org/10.1038/381520a0 CrossRefGoogle Scholar
  39. Thorpe, S. J., Gegenfurtner, K. R., Fabre-Thorpe, M., & Bülthoff, H. H. (2001). Detection of animals in natural images using far peripheral vision. European Journal of Neuroscience, 14(5), 869–876. doi: https://doi.org/10.1046/j.0953-816x.2001.01717.x CrossRefGoogle Scholar
  40. Tipples, J., Young, A.W., Quinlan, P., Broks, P., & Ellis, A.W. (2002). Searching for threat. Quarterly Journal of Experimental Psychology. A: Human Experimental Psychology, 55(3), 1007–1026. doi: https://doi.org/10.1080/02724980143000659 CrossRefGoogle Scholar
  41. Van der Stigchel, S., & Theeuwes, J. (2005). Relation between saccade trajectories and spatial distractor locations. Cognitive Brain Research, 25(2), 579–582. doi: https://doi.org/10.1016/j.neubiorev.2005.12.001 CrossRefGoogle Scholar
  42. Van der Stigchel, S., Meeter, M., & Theeuwes, J. (2006). Eye movement trajectories and what they tell us. Neuroscience and Biobehavioral Reviews, 30, 666–679. doi:  https://doi.org/10.1016/j.neubiorev.2005.12.001 CrossRefGoogle Scholar
  43. Weaver, M. D., Lauwereyns, J., & Theeuwes, J. (2011). The effect of semantic information on saccade trajectory deviations. Vision Research, 51, 1124–1128. doi: https://doi.org/10.1016/j.visres.2011.03.005 CrossRefGoogle Scholar
  44. Wilkins, A., Nimmo-Smith, I., Tait, A., McManus, C., Della Sala, S., Tilley, A., . . . Scott, S. (1984). A neurological basis for visual discomfort. Brain: A Journal of Neurology, 107 (4), 989–1017.CrossRefGoogle Scholar
  45. Willenbockel, V., Sadr, J., Fiset, D., Horne, G. O., Gosselin, F., & Tanaka, J. W. (2010). Controlling low-level image properties: The SHINE toolbox. Behavior Research Methods, 42(3), 671–684.  https://doi.org/10.3758/BRM.42.3.671 CrossRefGoogle Scholar
  46. Witt, J. K., & Sugovic, M. (2013). Spiders appear to move faster than non-threatening objects regardless of one’s ability to block them. Acta Psychologica, 143(3), 284–291. doi: https://doi.org/10.1016/j.actpsy.2013.04.011 CrossRefGoogle Scholar

Copyright information

© The Psychonomic Society, Inc. 2018

Authors and Affiliations

  1. 1.Department of Integrated Psychological SciencesKwansei Gakuin UniversityNishinomiya-shiJapan
  2. 2.Tokyo Metropolitan UniversityTokyoJapan

Personalised recommendations