Attention, Perception, & Psychophysics

, Volume 81, Issue 1, pp 98–108 | Cite as

Remapping versus short-term memory in visual stability across saccades

  • Rodrigo Balp
  • Florian Waszak
  • Thérèse Collins


Saccadic eye movements cause displacements of the image of the visual world projected on the retina. Despite the ubiquitous nature of saccades, subjective experience of the world is continuous and stable. In five experiments, we addressed the mechanisms that may support visual stability: matching of pre- and postsaccadic locations of the target by an internal copy of the saccade, or retention of the visual attributes of the target in short-term memory across the saccade. Healthy human adults were instructed to make a saccade to a peripheral Gabor patch. While the saccade was in midflight, the patch could change location, orientation, or both. The change occurred either immediately or following a 250-ms blank during which no visual stimuli were available. In separate experiments, subjects had to report either whether the patch stepped to the left or right or whether the orientation rotated clockwise or counterclockwise. Consistent with previous findings, we found that transsaccadic displacement discrimination was enhanced by the addition of the blank. However, contrary to previous findings reported in the literature, the feature change did not improve performance. Transsaccadic orientation change discrimination did not depend on either an irrelevant temporal blank or a simultaneous irrelevant target displacement. Taken together, these findings suggest that orientation is not a relevant visual feature for transsaccadic correspondence.


Eye movements Cognitive processing 


  1. Bates, D., Maechler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67, 1–48. CrossRefGoogle Scholar
  2. Bell, C. C. (1981). An efference copy which is modified by reafferent input. Science, 214, 450–453.CrossRefGoogle Scholar
  3. Brainard, D. H. (1997). The Psychophysics Toolbox. Spatial Vision, 10, 433–436. CrossRefGoogle Scholar
  4. Bridgeman, B., Hendry, D., & Stark, L. (1975). Failure to detect displacement of the visual world during saccadic eye movements. Vision Research, 15, 719–722.CrossRefGoogle Scholar
  5. Casagrande, V. A., & Kaas, J. H. (1994). The afferent, intrinsic, and efferent connections of primary visual cortex in primates. In A. Peters & K. Rockland (Eds.), Cerebral cortex: Vol. 10. Primary visual cortex of primates (pp. 201–259). New York, NY: Plenum Press.CrossRefGoogle Scholar
  6. Cavanagh, P., Hunt, A. R., Afraz, A., & Rolfs, M. (2010). Visual stability based on remapping of attention pointers. Trends in Cognitive Sciences, 14, 147–153. CrossRefGoogle Scholar
  7. Collins, T. (2014). Trade-off between spatiotopy and saccadic plasticity. Journal of Vision, 14(12), 28. CrossRefGoogle Scholar
  8. Collins, T., Rolfs, M., Deubel, H., & Cavanagh, P. (2009). Post-saccadic location judgments reveal remapping of saccade targets to non-foveal locations. Journal of Vision, 9(5), 29. CrossRefGoogle Scholar
  9. Cornelissen, F. W., Peters, E. M., & Palmer, J. (2002). The EyeLink Toolbox: Eye tracking with MATLAB and the Psychophysics Toolbox. Behavior Research Methods, Instruments, & Computers, 34, 613–617. CrossRefGoogle Scholar
  10. Demeyer, M., De Graef, P., Wagemans, J., & Verfaillie, K. (2010). Object form discontinuity facilitates displacement discrimination across saccades. Journal of Vision, 10(6), 17. CrossRefGoogle Scholar
  11. Deubel, H. (2004). Localization of targets across saccades: Role of landmark objects. Visual Cognition, 11, 173–202.CrossRefGoogle Scholar
  12. Deubel, H., Bridgeman, B., & Schneider, W. X. (1998). Immediate post-saccadic information mediates space constancy. Vision Research, 38, 3147–3159. CrossRefGoogle Scholar
  13. Deubel, H., Schneider, W. X., & Bridgeman, B. (1996). Postsaccadic target blanking prevents saccadic suppression of image displacement. Vision Research, 36, 985–996.CrossRefGoogle Scholar
  14. Deubel, H., Schneider, W. X., & Bridgeman, B. (2002). Transsaccadic memory of position and form. Progress in Brain Research, 140, 165–180. CrossRefGoogle Scholar
  15. Doré-Mazars, K., Pouget, P., & Beauvillain, C. (2004). Attentional selection during preparation of eye movements. Psychological Research, 69, 67–76. CrossRefGoogle Scholar
  16. Duhamel, J. R., Colby, C. L., & Goldberg, M. E. (1992). The updating of the representation of visual space in parietal cortex by intended eye movements. Science, 255, 90–92. CrossRefGoogle Scholar
  17. Eymond, C., Cavanagh, P., & Collins, T. (2016). Feature-based attention across saccades and immediate postsaccadic selection. Attention, Perception, & Psychophysics, 78, 1293–1301.CrossRefGoogle Scholar
  18. Gruesser, O. J., Krizic, A., & Weiss, L. R. (1987). Afterimage movement during saccades in the dark. Vision Research, 27, 215–226.CrossRefGoogle Scholar
  19. Hamker, F. H. (2003). The reentry hypothesis: Linking eye movements to visual perception. Journal of Vision, 3(11), 14. CrossRefGoogle Scholar
  20. Henderson, J. M. (1994). Two representational systems in dynamic visual identification. Journal of Experimental Psychology: General, 123, 410–426. CrossRefGoogle Scholar
  21. Hollingworth, A., Richard, A. M., & Luck, S. J. (2008). Understanding the function of visual short-term memory: Transsaccadic memory, object correspondence, and gaze correction. Journal of Experimental Psychology: General, 137, 163–181. CrossRefGoogle Scholar
  22. Honda, H. (1989). Perceptual localization of visual stimuli flashed during saccades. Perception & Psychophysics, 45, 162–174.CrossRefGoogle Scholar
  23. Honda, H. (1991). The time courses of visual mislocalization and of extraretinal eye position signals at the time of vertical saccades. Vision Research, 31, 1915–1921. CrossRefGoogle Scholar
  24. Irwin, D. E., & Andrews, R. V. (1996). Integration and accumulation of information across saccadic eye movements. In T. Inui & J. L. McClelland (Eds.), Attention and performance XVI: Information integration in perception and communication (pp. 125–155). Cambridge, MA: MIT Press, Bradford Books.Google Scholar
  25. Irwin, R. D., & Gordon, D. E. (1998). Eye movements, attention and trans-saccadic memory. Visual Cognition, 5, 127–155. CrossRefGoogle Scholar
  26. Joiner, W. M., Cavanaugh, J., & Wurtz, R. H. (2011). Modulation of shifting receptive field activity in frontal eye field by visual salience. Journal of Neurophysiology, 106, 1179–1190.CrossRefGoogle Scholar
  27. Jonikaitis, D., & Theeuwes, J. (2013). Dissociating oculomotor contributions to spatial and feature-based selection. Journal of Neurophysiology, 110, 1525–1534. CrossRefGoogle Scholar
  28. Kleiner, M., Brainard, D., & Pelli, D. (2007). What’s new in Psychtoolbox-3? Perception, 36(ECVP Abstract Suppl.), 14.Google Scholar
  29. Matin, L. (1986). Visual localization and eye movements. In K. R. Boff, L. Kaufman, & J. P. Thomas (Eds.), Handbook of perception and human performance, Vol. 1 (pp. 20.1–20.45). New York, NY: Wiley.Google Scholar
  30. McConkie, G. W., & Currie, C. B. (1996). Visual stability across saccades while viewing complex pictures. Journal of Experimental Psychology. Human Perception and Performance, 22, 563–581. CrossRefGoogle Scholar
  31. Morey, R. D., & Rouder, J. N. (2015). BayesFactor: Computation of Bayes factors for common designs (R package version 0.9.12-2). Retrieved from
  32. O’Regan, J. K. (1992). Solving the “real” mysteries of visual perception: The world as an outside memory. Canadian Journal of Psychology, 46, 461–488. CrossRefGoogle Scholar
  33. Pollatsek, A., Rayner, K., & Collins, W. E. (1984). Integrating pictorial information across eye movements. Journal of Experimental Psychology. General, 113, 426–442.Google Scholar
  34. Poth, C. H., Herwig, A., & Schneider, W. X. (2015). Breaking object correspondence across saccadic eye movements deteriorates object recognition. Frontiers in Systems Neuroscience, 9, 176.CrossRefGoogle Scholar
  35. Poth, C. H., & Schneider, W. X. (2016). Breaking object correspondence across saccades impairs object recognition: The role of color and luminance. Journal of Vision, 16(11), 1. CrossRefGoogle Scholar
  36. R Core Team. (2016). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL
  37. Rolfs, M., Jonikaitis, D., Deubel, H., & Cavanagh, P. (2011). Predictive remapping of attention across eye movements Nature Neuroscience, 14, 252. CrossRefGoogle Scholar
  38. Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G. (2009). Bayesian t tests for accepting and rejecting the null hypothesis. Psychonomic Bulletin & Review, 16, 225–237. CrossRefGoogle Scholar
  39. Schneider, W. X. (1995). VAM: A neuro-cognitive model for visual attention control of segmentation, object recognition, and space-based motor action. Visual Cognition, 2, 331–376. CrossRefGoogle Scholar
  40. Schneider, W. X. (2013). Selective visual processing across competition episodes: A theory of task driven visual attention and working memory. Philosophical Transactions of the Royal Society B, 368, 20130060. CrossRefGoogle Scholar
  41. Sommer, M. A., & Wurtz, R. H. (2004). What the brain stem tells the frontal cortex. I. Oculomotor signals sent from superior colliculus to frontal eye field via mediodorsal thalamus. Journal of neurophysiology, 91(3), 1381–1402.Google Scholar
  42. Sommer, M. A., & Wurtz, R. H. (2006). Influence of the thalamus on spatial visual processing in frontal cortex. Nature, 444, 374–377. CrossRefGoogle Scholar
  43. Tas, A. C., Moore, C. M., & Hollingworth, A. (2012). An object-mediated updating account of insensitivity to transsaccadic change. Journal of Vision, 12(11), 18. CrossRefGoogle Scholar
  44. Tas, A. C., Moore, C. M., & Hollingworth, A. (2014). The representation of the saccade target object depends on visual stability. Visual Cognition, 22, 1042–1046. CrossRefGoogle Scholar
  45. Umeno, M. M., & Goldberg, M. E. (1997). Spatial processing in the monkey frontal eye field: I. Predictive visual responses. Journal of Neurophysiology, 78, 1373–1383.CrossRefGoogle Scholar
  46. Walker, M. F., Fitzgibbon, E. J., & Goldberg, M. E. (1995). Neurons in the monkey superior colliculus predict the visual result of impending saccadic eye movements. Journal of Neurophysiology, 73, 1988–2003.CrossRefGoogle Scholar
  47. Weiß, K., Schneider, W. X., & Herwig, A. (2015). A “blanking effect” for surface features: Transsaccadic spatial-frequency discrimination is improved by postsaccadic blanking. Attention, Perception, & Psychophysics, 77, 1500–1506. CrossRefGoogle Scholar
  48. Wexler, M., & Collins, T. (2014). Orthogonal steps relieve saccadic suppression. Journal of Vision, 14(2), 13. CrossRefGoogle Scholar
  49. Zimmermann, E., Born, S., Fink, G. R., & Cavanagh, P. (2014). Masking produces compression of space and time in the absence of eye movements. Journal of Neurophysiology, 112, 3066–3076. CrossRefGoogle Scholar

Copyright information

© The Psychonomic Society, Inc. 2018

Authors and Affiliations

  • Rodrigo Balp
    • 1
  • Florian Waszak
    • 1
  • Thérèse Collins
    • 1
  1. 1.Laboratoire Psychologie de la PerceptionUniversité Paris Descartes & CNRSParisFrance

Personalised recommendations