Advertisement

Gradual formation of visual working memory representations of motion directions

  • Hiroyuki Tsuda
  • Jun Saiki
Article

Abstract

Although it is well accepted that the formation of visual working memory (VWM) representations from simple static features is a rapid and effortless process that completes within several hundred milliseconds, the storage of motion information in VWM within that time scale can be challenging due to the limited processing capacity of the visual system. Memory formation can also be demanding especially when motion stimuli are visually complex. Here, we investigated whether the formation of VWM representations of motion direction is more gradual than that of static orientation and examined the effects of stimulus complexity on that process. To address these issues, we examined how the number and the precision of stored items in VWM develop over time by using a continuous report procedure. Results showed that while a viewing duration of several seconds was required for the successful storage of multiple motion directions in VWM regardless of motion complexity, the accumulation of memory precision was much slower when the motion stimulus was visually complex (Experiments 1 & 2). Additional experiments showed that the difference in memory performance for simple and complex motion stimuli cannot be explained by differences in signal-to-noise levels of the stimulus (Experiment 3). These results demonstrate remarkable temporal limitations in the formation of VWM representations for dynamic objects, and further show how this process is affected by stimulus properties such as visual complexity and signal-to-noise levels.

Keywords

Visual working memory Motion perception Consolidation Complexity Noise 

References

  1. Alvarez, G. A., & Cavanagh, P. (2004). The capacity of visual short-term memory is set both by visual information load and by number of objects. Psychological Science, 15(2), 106–111.  https://doi.org/10.1111/j.0963-7214.2004.01502006.x CrossRefPubMedGoogle Scholar
  2. Awh, E., Barton, B., & Vogel, E. K. (2007). Visual working memory represents a fixed number of items regardless of complexity. Psychological Science, 18(7), 622–628.  https://doi.org/10.1111/j.1467-9280.2007.01949.x CrossRefPubMedGoogle Scholar
  3. Ballard, D. H., Hayhoe, M. M., & Pelz, J. B. (1995). Memory representations in natural tasks. Journal of Cognitive Neuroscience, 7(1), 66–80.  https://doi.org/10.1162/jocn.1995.7.1.66 CrossRefPubMedGoogle Scholar
  4. Bays, P. M., Catalao, R. F. G., & Husain, M. (2009). The precision of visual working memory is set by allocation of a shared resource. Journal of Vision, 9(10):7.1–11,  https://doi.org/10.1167/9.10.7 CrossRefGoogle Scholar
  5. Bays, P. M., Gorgoraptis, N., Wee, N., Marshall, L., & Husain, M. (2011). Temporal dynamics of encoding, storage, and reallocation of visual working memory. Journal of Vision, 11(10):1–15.  https://doi.org/10.1167/11.10.6 CrossRefGoogle Scholar
  6. Becker, M. W., Miller, J. R., & Liu, T. (2013). A severe capacity limit in the consolidation of orientation information into visual short-term memory. Attention, Perception, & Psychophysics, 75(3), 415–425.  https://doi.org/10.3758/s13414-012-0410-0 CrossRefGoogle Scholar
  7. Bertenthal, B. I., & Pinto, J. (1994). Global processing of biological motion. Psychological Science, 5, 221–225.  https://doi.org/10.1111/j.1467-9280.1994.tb00504.x CrossRefGoogle Scholar
  8. Blake, R., Cepeda, N. J., & Hiris, E. (1997). Memory for visual motion. Journal of Experimental Psychology: Human Perception and Performance, 23(2), 353–369.  https://doi.org/10.1037/0096-1523.23.2.353 PubMedGoogle Scholar
  9. Blake, R., Shiffrar, M. (2007). Perception of human motion. Annual Review of Psychology, 58:47-73.  https://doi.org/10.1146/annurev.psych.57.102904.190152 CrossRefPubMedGoogle Scholar
  10. Brady, T. F., Störmer, V. S., & Alvarez, G. A. (2016). Working memory is not fixed-capacity: More active storage capacity for real-world objects than for simple stimuli. Proceedings of the National Academy of Sciences, 113(27), 7459–7464.  https://doi.org/10.1073/pnas.1520027113 CrossRefGoogle Scholar
  11. Britten, K. H., Shadlen, M. N., Newsome, W. T., & Movshon, J. A. (1992). The analysis of visual motion: A comparison of neuronal and psychophysical performance. The Journal of Neuroscience, 12(12), 4745–4765.  https://doi.org/10.1523/jneurosci.12-12-04745.1992 CrossRefPubMedGoogle Scholar
  12. Chang, D. H. F., & Troje, N. F. (2008). Perception of animacy and direction from local biological motion signals. Journal of Vision, 8(5):3.1–10.  https://doi.org/10.1167/8.5.3 CrossRefGoogle Scholar
  13. Chang, D. H. F., & Troje, N. F. (2009). Characterizing global and local mechanisms in biological motion perception. Journal of Vision, 9(5):8.1–10,  https://doi.org/10.1167/9.5.8 CrossRefGoogle Scholar
  14. Chase, W. G., & Simon, H. A. (1973). Perception in chess. Cognitive Psychology, 4(1), 55–81.  https://doi.org/10.1016/0010-0285(73)90004-2 CrossRefGoogle Scholar
  15. Curby, K. M., & Gauthier, I. (2007). A visual short-term memory advantage for faces. Psychonomic Bulletin & Review, 14(4), 620–628.  https://doi.org/10.3758/bf03196811 CrossRefGoogle Scholar
  16. Curby, K. M., Glazek, K., & Gauthier, I. (2009). A visual short-term memory advantage for objects of expertise. Journal of Experimental Psychology: Human Perception and Performance, 35(1), 94–107.  https://doi.org/10.1037/0096-1523.35.1.94 PubMedGoogle Scholar
  17. Ding, X., Zhao, Y., Wu, F., Lu, X., Gao, Z., & Shen, M. (2015). Binding biological motion and visual features in working memory. Journal of Experimental Psychology: Human Perception and Performance, 41(3), 850–865.  https://doi.org/10.1037/xhp0000061 PubMedGoogle Scholar
  18. Edwards, M., & Rideaux, R. (2013). How many motion signals can be simultaneously perceived? Vision Research, 76, 11–16.  https://doi.org/10.1016/j.visres.2012.10.004 CrossRefPubMedGoogle Scholar
  19. Endress, A. D., & Potter, M. C. (2014). Large capacity temporary visual memory. Journal of Experimental Psychology: General, 143(2), 548–565.  https://doi.org/10.1037/a0033934 CrossRefGoogle Scholar
  20. Eng, H. Y., Chen, D., & Jiang, Y. (2005). Visual working memory for simple and complex visual stimuli. Psychonomic Bulletin & Review, 12(6), 1127–1133.  https://doi.org/10.1167/5.8.611 CrossRefGoogle Scholar
  21. Ericsson, K. A., & Kintsch, W. (1995). Long-term working memory. Psychological Review, 102(2), 211–245.  https://doi.org/10.1037/0033-295x.102.2.211 CrossRefPubMedGoogle Scholar
  22. Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191.  https://doi.org/10.3758/bf03193146 CrossRefPubMedGoogle Scholar
  23. Foulsham, T., Walker, E., & Kingstone, A. (2011). The where, what and when of gaze allocation in the lab and the natural environment. Vision Research, 51(17), 1920–1931.  https://doi.org/10.1016/j.visres.2011.07.002 CrossRefPubMedGoogle Scholar
  24. Gao, T., Gao, Z., Li, J., Sun, Z., & Shen, M. (2011). The perceptual root of object-based storage: An interactive model of perception and visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 37, 1803–1823. doi: https://doi.org/10.1037/a0025637 PubMedGoogle Scholar
  25. Gao, Z., Ding, X., Yang, T., Liang, J., & Shui, R. (2013). Coarse-to-fine construction for high-resolution representation in visual working memory. PLOS ONE, 8(2), e57913.  https://doi.org/10.1371/journal.pone.0057913 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Greenwood, J. A., & Edwards, M. (2009). The detection of multiple global directions: Capacity limits with spatially segregated and transparent-motion signals. Journal of Vision, 9(1), 40–40. doi: https://doi.org/10.1167/9.1.40 CrossRefPubMedGoogle Scholar
  27. Hochstein, S., & Ahissar, M. (2002). View from the top: Hierarchies and reverse hierarchies in the visual system. Neuron, 36(5), 791–804.  https://doi.org/10.1016/s0896-6273(02)01091-7 CrossRefPubMedGoogle Scholar
  28. Jackson, M. C., Linden, D. E. J., Roberts, M. V., Kriegeskorte, N., & Haenschel, C. (2015). Similarity, not complexity, determines visual working memory performance. Journal of Experimental Psychology: Learning, Memory, and Cognition, 41(6), 1884–1892.  https://doi.org/10.1037/xlm0000125 PubMedGoogle Scholar
  29. Johansson, G. (1973). Visual perception of biological motion and a model for its analysis. Perception & Psychophysics, 14, 201–211.  https://doi.org/10.3758/BF03212378 CrossRefGoogle Scholar
  30. Jolicoeur, P., & Dell’Acqua, R. (1998). The demonstration of short-term consolidation. Cognitive Psychology, 36(2), 138–202.  https://doi.org/10.1006/cogp.1998.0684 CrossRefPubMedGoogle Scholar
  31. Jovancevic, J., Sullivan, B., & Hayhoe, M. (2006). Control of attention and gaze in complex environments. Journal of Vision, 6(12), 1431–1450.  https://doi.org/10.1167/6.12.9 CrossRefPubMedGoogle Scholar
  32. Kawasaki, M., Watanabe, M., & Okuda, J. (2008). Human posterior parietal cortex maintains color, shape and motion in visual short-term memory. Brain Research, 13, 4–6. doi: https://doi.org/10.1016/j.brainres.2008.03.037 Google Scholar
  33. Levin, D. T., Momen, N., Drivdahl, S. B., IV, & Simons, D. J. (2000). Change blindness blindness: The metacognitive error of overestimating change-detection ability. Visual Cognition, 7, 397–412.  https://doi.org/10.1080/135062800394865 CrossRefGoogle Scholar
  34. Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390(6657), 279–281.  https://doi.org/10.1038/36846 CrossRefPubMedGoogle Scholar
  35. Luck, S. J., & Vogel, E. K. (2013). Visual working memory capacity: From psychophysics and neurobiology to individual differences. Trends in Cognitive Sciences, 17(8), 3911–400.  https://doi.org/10.1016/j.tics.2013.06.006 CrossRefGoogle Scholar
  36. Makovski, T., & Jiang, Y. V. (2008). Proactive interference from items previously stored in visual working memory. Memory & Cognition, 36(1), 43–52.  https://doi.org/10.3758/mc.36.1.43 CrossRefGoogle Scholar
  37. Mance, I., Becker, M. W., & Liu, T. (2012). Parallel consolidation of simple features into visual short-term memory. Journal of Experimental Psychology: Human Perception and Performance, 38(2), 429–438. doi: https://doi.org/10.1037/a0023925 PubMedGoogle Scholar
  38. Miller, J., & Ulrich, R. (2001). On the analysis of psychometric functions: The Spearman-Karber method. Perception & Psychophysics, 63, 1399–1420.  https://doi.org/10.3758/BF03195545 CrossRefGoogle Scholar
  39. O’Regan, J. K. (1992). Solving the “real” mysteries of visual perception: The world as an outside memory. Canadian Journal of Psychology, 46, 461–88.  https://doi.org/10.1037/h0084327 CrossRefPubMedGoogle Scholar
  40. Orhan, A. E., & Jacobs, R. A. (2014). Toward ecologically realistic theories in visual short-term memory research. Attention, Perception, & Psychophysics, 76(7), 2158–2170.  https://doi.org/10.3758/s13414-014-0649-8 CrossRefGoogle Scholar
  41. Pinto, Y., Sligte, I. G., Shapiro, K. L., & Lamme, V. A. F. (2013). Fragile visual short-term memory is an object-based and location-specific store. Psychonomic Bulletin & Review, 20(4), 732–739.  https://doi.org/10.3758/s13423-013-0393-4 CrossRefGoogle Scholar
  42. Poom, L. (2012). Memory of gender and gait direction from biological motion: Gender fades away but directions stay. Journal of Experimental Psychology: Human Perception and Performance, 38(5), 1091–1097.  https://doi.org/10.1037/a0028503 PubMedGoogle Scholar
  43. Ricker, T. J. (2015). The role of short-term consolidation in memory persistence. AIMS Neuroscience, 2(4), 259–279.  https://doi.org/10.3934/neuroscience.2015.4.259 CrossRefGoogle Scholar
  44. Rideaux, R., Apthorp, D., & Edwards, M. (2015). Evidence for parallel consolidation of motion direction and orientation into visual short-term memory. Journal of Vision, 15(2), 17.  https://doi.org/10.1167/15.2.17 CrossRefPubMedGoogle Scholar
  45. Schurgin, M. W., Wixted, J. T., & Brady, T. F. B. (2018). Psychological scaling reveals a single parameter framework for visual working memory. BioRxiv.  https://doi.org/10.1101/325472
  46. Shaffer, J. P. (1986). Modified sequentially rejective multiple test procedures. Journal of American Statistical Association, 81, 826–831.  https://doi.org/10.1080/01621459.1986.10478341 CrossRefGoogle Scholar
  47. Shen, M., Gao, Z., Ding, X., Zhou, B., & Huang, X. (2014). Holding biological motion information in working memory. Journal of Experimental Psychology: Human Perception and Performance, 40(4), 1332–1345.  https://doi.org/10.1037/a0036839 PubMedGoogle Scholar
  48. Sligte, I. G., Scholte, H. S., & Lamme, V. A. F. (2008). Are there multiple visual short-term memory stores? PLOS ONE, 3(2), e1699.  https://doi.org/10.1371/journal.pone.0001699 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Smyth, M. M., Pearson, N. A., & Pendleton, L. R. (1988). Movement and working memory: Patterns and positions in space. The Quarterly Journal of Experimental Psychology Section A, 40(3), 497–514.  https://doi.org/10.1080/02724988843000041 CrossRefGoogle Scholar
  50. Sweeny, T. D., Haroz, S., & Whitney, D. (2013). Perceiving group behavior: Sensitive ensemble coding mechanisms for biological motion of human crowds. Journal of Experimental Psychology: Human Perception and Performance, 39(2), 329–337.  https://doi.org/10.1037/a0028712 PubMedGoogle Scholar
  51. Thurman, S. M., & Grossman, E. D. (2008). Temporal “bubbles” reveal key features for point-light biological motion perception. Journal of Vision, 8(3), 28.1–11.  https://doi.org/10.1167/8.3.28 CrossRefGoogle Scholar
  52. Vanrie, J., & Verfaillie, K. (2004). Perception of biological motion: A stimulus set of human point-light actions. Behavior Research Methods, Instruments, & Computers, 36, 625– 629.  https://doi.org/10.3758/BF03206542 CrossRefGoogle Scholar
  53. Vogel, E. K., Woodman, G. F., & Luck, S. J. (2006). The time course of consolidation in visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 32, 1436-1451.  https://doi.org/10.1037/0096-1523.32.6.1436
  54. Watamaniuk, S. N. J. (1993). Ideal observer for discrimination of the global direction of dynamic random-dot stimuli. Journal of the Optical Society of America A, 10(1), 16.  https://doi.org/10.1364/josaa.10.000016 CrossRefGoogle Scholar
  55. Whitney, D., & Yamanashi Leib, A. (2018). Ensemble perception. Annual Review of Psychology, 69(1), 105–129.  https://doi.org/10.1146/annurev-psych-010416-044232 CrossRefPubMedGoogle Scholar
  56. Wood, J. N. (2007). Visual working memory for observed actions. Journal of Experimental Psychology: General, 136(4), 639–652. doi: https://doi.org/10.1037/0096-3445.136.4.639 CrossRefGoogle Scholar
  57. Xu, Y., & Chun, M. M. (2009). Selecting and perceiving multiple visual objects. Trends in Cognitive Sciences, 13(4), 167–174.  https://doi.org/10.1016/j.tics.2009.01.008 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Zhang, W., & Luck, S. J. (2008). Discrete fixed-resolution representations in visual working memory. Nature, 453(May), 233–236.  https://doi.org/10.1038/nature06860 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Psychonomic Society, Inc. 2018

Authors and Affiliations

  1. 1.Graduate School of Human and Environmental StudiesKyoto UniversityKyotoJapan

Personalised recommendations