Advertisement

Attention, Perception, & Psychophysics

, Volume 81, Issue 1, pp 310–322 | Cite as

Competition between color and luminance in motion correspondence

  • Elisabeth HeinEmail author
  • Alexander C. Schütz
Article
  • 76 Downloads

Abstract

The visual system needs to solve the correspondence problem (i.e., which elements belong together across space and time) to allow stable representations of objects. It has been shown that spatiotemporal and feature information can influence this correspondence process, but it is unclear how these factors interact with each other, especially when they are more or less prominent due to changes in contrast magnitude. We investigated this question using a variation of the Ternus display, an ambiguous apparent motion display, in which three elements can either be perceived as moving together (group motion) or as one element jumping across the others (element motion). In the first experiment, we biased the percept by presenting some of the elements with the same feature (isoluminant color or luminance), such that they were either compatible with group motion or with element motion (simple feature biases). To change the strength of the feature bias, we manipulated the contrast magnitude of the feature. In three more experiments we introduced competitive displays, in which some of the elements showed a color/luminance based element bias of varying contrast magnitude, while other elements showed a luminance/color based group bias of varying contrast magnitude (competing feature bias). We found that for a simple feature bias the contrast magnitude did not affect the strength of the bias. For competing feature biases, however, the contrast magnitude did influence correspondence, as the bias strength increased with contrast. The implications of our results for current motion and feature-based theories of correspondence are discussed.

Keywords

Motion: Apparent Perceptual organization Visual perception 

Notes

Acknowledgements

We thank Robert Konz and Jan Christopher Werner for help with data collection. We also thank Cathleen Moore, two anonymous reviewers, and the action editor Michael Dodd for valuable comments and suggestions clarifying the manuscript. This research was supported by DFG project HE 7543/1-1.

References

  1. Adelson, E. H., & Bergen, J. R. (1985). Spatiotemporal energy models for the perception of motion. Journal of the Optical Society of America A, 2, 284–299.CrossRefGoogle Scholar
  2. Alais, D., & Lorenceau, J. (2002). Perceptual grouping in the Ternus display: Evidence for an “association field” in apparent motion. Vision Research, 42, 1005–1016.CrossRefGoogle Scholar
  3. Braddick, O. J., Adlard, A. (1978). Apparent motion and the motion detector. In J. C. Armington, J. Krauskopf, & B. R. Wooten, (Eds), Visual psychophysics and psychology (pp. 417–426). New York, NY: Academic Press.CrossRefGoogle Scholar
  4. Brainard, D. H. (1997). The Psychophysics Toolbox. Spatial Vision, 10(4), 433–436.CrossRefGoogle Scholar
  5. Breitmeyer, B. G., May, J. G., & Williams, M. C. (1988). Spatial frequency and contrast effects on percepts of bistable stroboscopic motion. Perception & Psychophysics 44, 525–531.CrossRefGoogle Scholar
  6. Breitmeyer, B. G., & Ritter, A. (1986a). The role of visual pattern persistence in bistable stroboscopic motion. Vision Research, 26, 1801–1806.CrossRefGoogle Scholar
  7. Breitmeyer, B. G., & Ritter, A. (1986b). Visual persistence and the effect of eccentric viewing, element size, and frame duration on bistable stroboscopic motion percepts. Perception & Psychophysics, 39, 275–280.CrossRefGoogle Scholar
  8. Burt, P., & Sperling, G. (1981). Time, distance, and feature trade-offs in visual apparent motion. Psychological Review, 88, 171–195.CrossRefGoogle Scholar
  9. Casco, C. (1990). The relationship between visual persistence and event perception in bistable motion display. Perception, 19, 437–445.CrossRefGoogle Scholar
  10. Cavanagh, P. (1992). Attention-based motion perception. Science, 257, 1563–1565.CrossRefGoogle Scholar
  11. Cavanagh, P., Arguin, M., & von Grünau, M. (1989). Interattribute apparent motion. Vision Research, 29, 1197–1204.CrossRefGoogle Scholar
  12. Cestnick, L., & Coltheart, M. (1999) The relationship between language-processing and visual processing deficits in developmental dyslexia. Cognition, 71, 231–255.CrossRefGoogle Scholar
  13. Dawson, M. (1991). The how and why of what went where in apparent motion: Modeling solutions to the motion correspondence problem. Psychological Review, 98, 569-603.CrossRefGoogle Scholar
  14. Dawson, M., Nevin-Meadows, N., & Wright, R. (1994). Polarity matching in the Ternus configuration. Vision Research, 34, 3347–3359.CrossRefGoogle Scholar
  15. Derrington, A. M., Krauskopf, J., & Lennie, P. (1984). Chromatic mechanisms in lateral geniculate nucleus of macaque. The Journal of Physiology, 357, 241–265.CrossRefGoogle Scholar
  16. Dodd, M. D., McAuley, T., & Pratt, J. (2005). An illusion of 3-D motion with the Ternus display. Vision Research, 45, 969–973.CrossRefGoogle Scholar
  17. Ernst, M. O., & Bülthoff, H. H. (2004). Merging the senses into a robust percept. Trends in Cognitive Sciences, 8, 162–169.CrossRefGoogle Scholar
  18. Flombaum, J. I., Scholl, B. J., & Santos, L. R. (2009). Spatiotemporal priority as a fundamental principle of object persistence. In B. Hood & L. Santos (Eds.), The origins of object knowledge (pp. 135–164). New York, NY: Oxford University Press.CrossRefGoogle Scholar
  19. Gegenfurtner, K. R., & Hawken, M. J. (1996). Interaction of motion and color in the visual pathways. Trends in Neurosciences, 19(9), 394–401.CrossRefGoogle Scholar
  20. Green, M. (1986). What determines correspondence strength in apparent motion? Vision Research, 26, 599–607.CrossRefGoogle Scholar
  21. Green, M. (1989). Color correspondence in apparent motion. Perception & Psychophysics, 45, 15–20.CrossRefGoogle Scholar
  22. He, Z., & Ooi, T. (1999). Perceptual organization of apparent motion in the Ternus display. Perception, 28, 877–892.CrossRefGoogle Scholar
  23. Hein, E., & Cavanagh, P. (2012). Motion correspondence shows feature bias in spatiotopic coordinates. Journal of Vision, 12(7), 16, 1–14,  https://doi.org/10.1167/12.7.16 CrossRefGoogle Scholar
  24. Hein, E., & Moore, C. M. (2012). Spatio-temporal priority revisited: The role of feature identity and similarity for object correspondence in apparent motion. Journal of Experimental Psychology: Human Perception and Performance, 38, 975–988.Google Scholar
  25. Hein, E., & Moore, C. M. (2014). Evidence for scene-based motion correspondence. Attention, Perception & Psychophysics, 76, 793–804.  https://doi.org/10.3758/s13414-013-0616-9 CrossRefGoogle Scholar
  26. Kahneman, D., Treisman, A., & Gibbs, B. (1992). The reviewing of object files: Object-specific integration of information. Cognitive Psychology, 24, 175–219.CrossRefGoogle Scholar
  27. Kleiner, M., Brainard, D., & Pelli, D. (2007). What’s new in Psychtoolbox-3? Perception, 36, ECVP Abstract Supplement.Google Scholar
  28. Kolers, P. A. (1972). Aspects of motion perception. New York, NY: Pergamon Press.Google Scholar
  29. Kolers, P. A., & Pomerantz, J. (1971). Figural change in apparent motion. Journal of Experimental Psychology, 87, 99–108.CrossRefGoogle Scholar
  30. Kolers, P. A., & von Grünau, M. (1976). Shape and color in apparent motion. Vision Research, 16, 329–335.CrossRefGoogle Scholar
  31. Korte, A. (1915). Kinematoskopische Untersuchungen [Kinematoscopic examinations]. Zeitschrift für Psychologie, 72, 193–296.Google Scholar
  32. Kramer, P., & Rudd, M. (1999). Visible persistence and form correspondence in Ternus apparent motion. Perception & Psychophysics, 61, 952–962.CrossRefGoogle Scholar
  33. Kramer, P., & Yantis, S. (1997). Perceptual grouping in space and time: Evidence from the Ternus display. Perception & Psychophysics, 59, 87–99.CrossRefGoogle Scholar
  34. Livingstone, M., & Hubel, D. (1988). Segregation of form, color, movement, and depth: Anatomy, physiology, and perception. Science, 240(4853), 740–749.CrossRefGoogle Scholar
  35. Merigan, W. H., & Maunsell, J. H. (1993). How parallel are the primate visual pathways? Annual Review of Neuroscience, 16, 369–402.CrossRefGoogle Scholar
  36. Navon, D. (1976). Irrelevance of figural identity for resolving ambiguities in apparent motion. Journal of Experimental Psychology: Human Perception and Performance, 2, 130–138.Google Scholar
  37. Navon, D. (1983). Preservation and change of hue, brightness and form in apparent motion. Bulletin of the Psychonomic Society, 21, 131–134.CrossRefGoogle Scholar
  38. Nishida, S., & Takeuchi, T. (1990). The effects of luminance on affinity of apparent motion. Vision Research, 30, 709–721.CrossRefGoogle Scholar
  39. Ohtani, Y., Ejima, Y., & Nishida, S., (1991). Contribution of transient and sustained responses to the perception of apparent motion. Vision Research, 31, 999–1012.CrossRefGoogle Scholar
  40. Pantle, A., & Petersik J. T. (1980). Effects of spatial parameters on the perceptual organization of a bistable motion display. Perception & Psychophysics, 27, 307–312.CrossRefGoogle Scholar
  41. Pantle, A., & Picciano, L. (1976). A multistable movement display: evidence for two separate motion systems in human vision. Science, 193, 500–502.CrossRefGoogle Scholar
  42. Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10(4), 437–442.CrossRefGoogle Scholar
  43. Petersik, J., & Pantle, A. (1979). Factors controlling the competing sensations produced by a bistable stroboscopic motion display. Vision Research, 19, 143–154.CrossRefGoogle Scholar
  44. Petersik, J., & Rice, C. (2006). The evolution of explanations of a perceptual phenomenon: A case history using the Ternus effect. Perception, 35, 807–821.CrossRefGoogle Scholar
  45. Petersik, J., & Rice, C. (2008). Spatial correspondence and relation correspondence: Grouping factors that influence perception of the Ternus display. Perception, 37, 725–739.CrossRefGoogle Scholar
  46. Petersik J. T. (1989). The two-process distinction in apparent motion. Psychological Bulletin, 106, 107–127CrossRefGoogle Scholar
  47. Pikler, J. (1917). Sinnesphysiologische Untersuchungen [Sensoryphysiological examinations]. Leipzig, Germany: J. A. Barth.Google Scholar
  48. Pylyshyn, Z. W. (1989). The role of location indexes in spatial perception: A sketch of the FINST spatial-index model. Cognition, 32, 65–97.CrossRefGoogle Scholar
  49. Ramachandran, V. S., Ginsburg, A. P., & Anstis, S. M. (1983). Low spatial frequencies dominate apparent motion. Perception, 12, 457–461.CrossRefGoogle Scholar
  50. Reichardt, W. (1961). Autocorrelation, a principle for the evaluation of sensory information. In W. A. Rosenblith (Ed.), Sensory communication (pp. 303–317). Cambridge, MA: MIT Press.Google Scholar
  51. Schiller, P. H., & Logothetis, N. K. (1990). The color-opponent and broad-band channels of the primate visual system. Trends in Neurosciences, 13, 392–398.CrossRefGoogle Scholar
  52. Scholl, B. J. (2007). Object persistence in philosophy and psychology. Mind & Language 22, 563–591. doi: https://doi.org/10.1111/j.1468-0017.2007 CrossRefGoogle Scholar
  53. Scott-Samuel, N. E., & Hess, R. F. (2001). What does the Ternus display tell us about motion processing in human vision? Perception, 30, 1179–1188.CrossRefGoogle Scholar
  54. Sekuler, A. B., & Bennett, P. J. (1996). Spatial phase differences can drive apparent motion. Perception & Psychophysics, 58, 174–190.CrossRefGoogle Scholar
  55. Shechter, S., & Hochstein, S. (1989). Size, flux and luminance effects in the apparent motion correspondence process. Vision Research, 29, 579–591.CrossRefGoogle Scholar
  56. Shechter, S., Hochstein, S., & Hillman, P. (1988). Shape similarity and distance disparity as apparent motion correspondence cues. Vision Research, 28, 1013–1021.CrossRefGoogle Scholar
  57. Skottun, B. C. (2001). On the use of the Ternus test to assess magnocellular function. Perception, 30, 1449–1457CrossRefGoogle Scholar
  58. Ternus, J. (1950). Experimentelle Untersuchungen über phänomenale Identität [Investigations concerning the study of the Gestalt: Experimental investigations of phenomenal identity] (W. D. Ellis, Trans. In W. D. Ellis (Ed.), A sourcebook of gestalt psychology. New York, NY: Humanities Press. (Reprinted from Psychologische Forschung, 7, 81–136, 1926)Google Scholar
  59. Ullman, S. (1979). The interpretation of visual motion. Cambridge, MA: MIT Press.Google Scholar
  60. van der Smagt, M. J., Verstraten, F. A., & van de Grind, W. A. (1999). A new transparent motion aftereffect. Nature Neuroscience, 2(7), 595–596.CrossRefGoogle Scholar
  61. Van Santen, J. P. H., & Sperling, G. (1985). Elaborated Reichardt detectors. Journal of the Optical Society of America A, 2, 300–321.CrossRefGoogle Scholar
  62. Wallace, J., & Scott-Samuel, N. (2007). Spatial versus temporal grouping in a modified Ternus display. Vision Research, 47, 2353–2366.CrossRefGoogle Scholar
  63. Werkhoven, P., Sperling, G., & Chubb, C. (1993). The dimensionality of texture-defined motion: A single channel theory. Vision Research, 33, 463–485.CrossRefGoogle Scholar
  64. Werkhoven, P., Sperling, G., & Chubb, C. (1994). Perception of apparent motion between dissimilar gratings: Spatiotemporal properties. Vision Research, 34, 2741–2759.CrossRefGoogle Scholar
  65. Wertheimer, M. (1912). Experimentelle Studien uber das Sehen von Bewegung [Experimental studies of the perception of motion]. Zeitschrift für Psychologie, 61, 161–265.Google Scholar
  66. Wichmann, F. A., & Hill, N. J. (2001). The psychometric function: I. Fitting, sampling, and goodness of fit. Perception & Psychophysics, 63, 1293–1313.CrossRefGoogle Scholar

Copyright information

© The Psychonomic Society, Inc. 2018

Authors and Affiliations

  1. 1.Evolutionäre KognitionUniversität TübingenTübingenGermany
  2. 2.Allgemeine und Biologische PsychologiePhilipps-Universität MarburgMarburgGermany

Personalised recommendations