Attention, Perception, & Psychophysics

, Volume 80, Issue 7, pp 1667–1674 | Cite as

Relating the perception of visual ensemble statistics to individual levels of autistic traits

  • Matthew X. Lowe
  • Ryan A. Stevenson
  • Morgan D. Barense
  • Jonathan S. Cant
  • Susanne Ferber
Short Report


Integrating information across the visual field into an ensemble (e.g., seeing the forest from the trees) is an effective strategy to efficiently process the visual world, and one that is often impaired in autism spectrum disorder. Individual differences in sensory processing predict ensemble encoding, providing a potential mechanism for differing perceptual strategies across individuals, and possibly across diagnostic groups exhibiting atypical sensory processing. Here, we explore whether ensemble encoding is associated with traits associated with autism spectrum disorder (ASD). Participants (N=68) were presented with an ensemble display consisting of circles of varying sizes and colors, and were asked to remember the size of the red and blue circles, while ignoring the green circles. Participants were then cued to a target location after a brief delay, and instructed to report the remembered size of the circle they had previously viewed in that location, as ensemble information commonly biases memory for individual objects toward the probed mean of a set of similar objects. The Autism-spectrum Quotient (AQ) was completed to measure each individual’s level of autistic traits. We found that an individual’s level of ensemble perception, measured as their bias toward the probed mean, was negatively associated with a higher level of ASD traits. These results suggest that individuals with higher levels of ASD traits are less likely to integrate perceptual information. These findings may shed light on different perceptual processing within the autism spectrum, and provide insight into the relationship between individual differences and ensemble encoding.


Ensemble statistics Summary statistics Mean size Autism spectrum disorder (ASD) 



R.A.S is supported by internal grants from the University of Western Ontario, a Social Sciences and Humanities Research Council of Canada (SSHRC) Insight grant (R5502A07), an NSERC Discovery Grant (RGPIN-2017-04656), an Ontario Early Researcher Award, and the John R. Evans Leaders Fund from the Canadian Foundation for Innovation (#37497). J.S.C. is supported by a Natural Sciences and Engineering Research Council (NSERC) Grant (216203-13) and Canadian Institutes of Health Research (CIHR) Grant (106436) to S.F., an NSERC grant to J.S.C. (435647-13). M.D.B. is supported by the Canada Research Chairs Program and a James S. McDonnell Scholar Award. The authors thank Timothy Brady and George Alvarez at Harvard University for providing their ensemble experiment and analysis procedure.

Compliance with ethical standards

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Conflict of interest

All authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.


  1. Alvarez, G. A. (2011). Representing multiple objects as an ensemble enhances visual cognition. Trends in cognitive sciences, 15(3), 122-131.CrossRefPubMedGoogle Scholar
  2. Baron-Cohen, S., Wheelwright, S., Skinner, R., Martin, J., & Clubley, E. (2001). The autism-spectrum quotient (AQ): Evidence from asperger syndrome/high-functioning autism, males and females, scientists and mathematicians. Journal of autism and developmental disorders, 31(1), 5-17CrossRefPubMedGoogle Scholar
  3. Baum, S. H., Stevenson, R. A., & Wallace, M. T. (2015). Behavioral, perceptual, and neural alterations in sensory and multisensory function in autism spectrum disorder. Progress in neurobiology, 134, 140-160.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Black, K. R., Stevenson, R. A., Segers, M., Ncube, B. L., Sun, S. Z., Philipp-Muller, ... Ferber, S. (2017). Linking Anxiety and Insistence on Sameness in Children with Autism: The Role of Hypersensitivity. Journal of Autism and Developmental Disabilities.
  5. Bölte, S., Westerwald, E., Holtmann, M., Freitag, C., & Poustka, F. (2011). Autistic traits and autism spectrum disorders: The clinical validity of two measures presuming a continuum of social communication skills. Journal of Autism and Developmental Disorders, 41(1), 66-72.CrossRefPubMedGoogle Scholar
  6. Brady, T. F., & Alvarez, G. A. (2011). Hierarchical encoding in visual working memory ensemble statistics bias memory for individual items. Psychological Science, 22(3), 384-392.CrossRefPubMedGoogle Scholar
  7. Brock, J., Brown, C. C., Boucher, J., & Rippon, G. (2002). The temporal binding deficit hypothesis of autism. Development and psychopathology 14(02), 209-224.CrossRefPubMedGoogle Scholar
  8. Cant, J. S., & Xu, Y. (2012). Object ensemble processing in human anterior-medial ventral visual cortex. The Journal of Neuroscience, 32(22), 7685-7700.CrossRefPubMedGoogle Scholar
  9. Cant, J. S., & Xu, Y. (2015). The impact of density and ratio on object-ensemble representation in human anterior-medial ventral visual cortex. Cerebral Cortex, 25(11), 4226-4239.CrossRefPubMedGoogle Scholar
  10. Cohen, M. A., Dennett, D. C., & Kanwisher, N. (2016). What is the bandwidth of perceptual experience? Trends in cognitive sciences, 20(5), 324-335.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Corbett, J. E., Venuti, P., & Melcher, D. (2016). Perceptual averaging in individuals with Autism Spectrum Disorder. Frontiers in Psychology, 7.Google Scholar
  12. Chandler, S., Charman, T., Baird, G., Simonoff, E., Loucas, T., Meldrum, D., . . . Pickles, A. (2007). Validation of the social communication questionnaire in a population cohort of children with autism spectrum disorders. Journal of the American Academy of Child & Adolescent Psychiatry, 46(10), 1324-1332.Google Scholar
  13. Constantino, J. N., Davis, S. A., Todd, R. D., Schindler, M. K., Gross, M. M., Brophy, S. L., ... Reich, W. (2003). Validation of a brief quantitative measure of autistic traits: comparison of the social responsiveness scale with the autism diagnostic interview-revised. Journal of Autism and Developmental Disorders, 33(4), 427-433.Google Scholar
  14. Dunn, W. (1997). The impact of sensory processing abilities on the daily lives of young children and their families: A conceptual model. Infants & Young Children, 9(4), 23-35.CrossRefGoogle Scholar
  15. Frith, U. (1989). Autism: Explaining the enigma (Vol. 1989). Blackwell Scientific Publications: Oxford.Google Scholar
  16. Haberman, J., Brady, T. F., & Alvarez, G. A. (2015). Individual differences in ensemble perception reveal multiple, independent levels of ensemble representation. Journal of Experimental Psychology: General, 144(2), 432.CrossRefGoogle Scholar
  17. Halberda, J., Sires, S. F., & Feigenson, L. (2006). Multiple spatially overlapping sets can be enumerated in parallel. Psychological science, 17(7), 572-576.CrossRefPubMedGoogle Scholar
  18. Happé, F. G. (1996). Studying weak central coherence at low levels: Children with autism do not succumb to visual illusions. A research note. Journal of Child Psychology and Psychiatry, 37(7), 873-877.CrossRefPubMedGoogle Scholar
  19. Happé, F., & Frith, U. (2006). The weak coherence account: Detail-focused cognitive style in autism spectrum disorders. Journal of autism and developmental disorders, 36(1), 5-25.CrossRefPubMedGoogle Scholar
  20. Horder, J., Wilson, C. E., Mendez, M. A., & Murphy, D. G. (2014). Autistic traits and abnormal sensory experiences in adults. Journal of Autism and Developmental Disorders, 44(6), 1461-1469.CrossRefPubMedGoogle Scholar
  21. Huang, L., Treisman, A., & Pashler, H. (2007). Characterizing the limits of human visual awareness. Science, 317(5839), 823-825.CrossRefPubMedGoogle Scholar
  22. Karaminis, T., Cicchini, G.M., Neil, L., Cappagli, G., Aagten-Murphy, D., Burr, D., & Pellicano, E. (2016). Central tendency effects in time interval reproduction in autism. Scientific Reports, 6, 28570.Google Scholar
  23. Karaminis, T., Neil, L., Manning, C., Turi, M., Fiorentini, C., Burr, D., & Pellicano, E. (2017). Ensemble perception of emotions in children with autism is similar to typically developing children. Developmental Cognitive Neuroscience, 24, 51-62.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Kern, J. K., Trivedi, M. H., Garver, C. R., Grannemann, B. D., Andrews, A. A., Savla, J. S., ... & Schroeder, J. L. (2006). The pattern of sensory processing abnormalities in autism. Autism, 10(5), 480-494.Google Scholar
  25. Koldewyn, K., Jiang, Y. V., Weigelt, S., & Kanwisher, N. (2013). Global/local processing in autism: Not a disability, but a disinclination. Journal of autism and developmental disorders, 43(10), 2329-2340.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Lawson, R. P., Mathys, C., & Rees, G. (2017). Adults with autism overestimate the volatility of the sensory environment. Nature neuroscience, 20(9), 1293.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Lowe, M. X., Gallivan, J. P., Ferber, S., & Cant, J. S. (2016a). Feature diagnosticity and task context shape activity in human scene-selective cortex. NeuroImage, 125, 681-692.CrossRefPubMedGoogle Scholar
  28. Lowe, M. X., Stevenson, R. A., Wilson, K. E., Ouslis, N. E., Barense, M. D., Cant, J. S., & Ferber, S. (2016b). Sensory processing patterns predict the integration of information held in visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 42(2), 294.PubMedGoogle Scholar
  29. Maule, J., Stanworth, K., Pellicano, E., & Franklin, A. (2016). Ensemble perception of color in autistic adults. Autism Research.Google Scholar
  30. Noel, J. P., De Niear, M. A., Stevenson, R., Alais, D., & Wallace, M. T. (2017). Atypical rapid audio-visual temporal recalibration in autism spectrum disorders. Autism Research, 10(1), 121-129.CrossRefPubMedGoogle Scholar
  31. Noel, J. P., Stevenson, R. A., & Wallace, M. T. (2018). Atypical audiovisual temporal function in autism and schizophrenia: Similar phenotype, different cause. European Journal of Neuroscience, 47(10), 1230-1241.CrossRefPubMedGoogle Scholar
  32. Pellicano, E., & Burr, D. (2012). When the world becomes ‘too real’: A Bayesian explanation of autistic perception. Trends in cognitive sciences, 16(10), 504-510.CrossRefPubMedGoogle Scholar
  33. Powell, G., Meredith, Z., McMillin, R., & Freeman, T. C. (2016). Bayesian models of individual differences: combining autistic traits and sensory thresholds to predict motion perception. Psychological science, 27(12), 1562-1572.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Rhodes, G., Neumann, M.F., Ewing, L., & Palermo, R. (2014). Reduced set averaging of face identity in children and adolescents with autism. Quarterly Journal of Experimental Psychology, 68, 1394–1403.Google Scholar
  35. Rubenstein, J. L. R., & Merzenich, M. M. (2003). Model of autism: Increased ratio of excitation/inhibition in key neural systems. Genes, Brain and Behavior, 2(5), 255-267.CrossRefGoogle Scholar
  36. Sevgi, M., Diaconescu, A.O., Tittgemeyer, M., & Schilbach, L. (2016). Social Bayes: Using Bayesian modeling to study autistic trait–related differences in social cognition. Biological Psychiatry, 80, 112–119.CrossRefPubMedGoogle Scholar
  37. Schultz, S. E., & Stevenson, R. A. (In Press). Sensory hypersensitivity predicts repetitive behaviors in autistic and typically-developed children. Autism. Google Scholar
  38. Simmons, D. R., Robertson, A. E., McKay, L. S., Toal, E., McAleer, P., & Pollick, F. E. (2009). Vision in autism spectrum disorders. Vision research, 49(22), 2705-2739.CrossRefPubMedGoogle Scholar
  39. Stevenson, R. A., Siemann, J. K., Schneider, B. C., Eberly, H. E., Woynaroski, T. G., Camarata, S. M., & Wallace, M. T. (2014a). Multisensory temporal integration in autism spectrum disorders. The Journal of Neuroscience, 34(3), 691-697.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Stevenson, R. A., Segers, M., Ferber, S., Barense, M. D., & Wallace, M. T. (2014b). The impact of multisensory integration deficits on speech perception in children with autism spectrum disorders. Frontiers in Psychology, 249.Google Scholar
  41. Stevenson, R. A., Toulmin, J. K., Youm, A., Besney, R. M., Schulz, S. E., Barense, M. D., & Ferber, S. (2017). Increases in the autistic trait of attention to detail are associated with decreased multisensory temporal adaptation. Scientific reports, 7(1), 14354.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Stevenson, R. A, Segers, M., Ncube, B. L., Black, K. R., Bebko, J. M., Ferber, S., & Barense, M. D. (2018a). The cascading influence of low-level multisensory processing on speech perception in autism. Autism, 22(5), 609-624.CrossRefPubMedGoogle Scholar
  43. Stevenson, R. A., Sun, S. Z., Hazlett, N., Cant, J. S., Barense, M. D., & Ferber, S. (2018b). Seeing the forest and the trees: default local processing in individuals with high autistic traits does not come at the expense of global attention. Journal of autism and developmental disorders, 1-15.Google Scholar
  44. Turi, M., Burr, D.C., Igliozzi, R., Aagten-Murphy, D., Muratori, F., & Pellicano, E. (2015). Children with autism spectrum disorder show reduced adaptation to number. Proceedings of the National Academy of Sciences of the United States of the America, 112, 7868–7872CrossRefGoogle Scholar
  45. Van der Hallen, R., Evers, K., Brewaeys, K., Van den Noortgate, W., & Wagemans, J. (2015). Global processing takes time: A meta-analysis on local–global visual processing in ASD. Psychological bulletin, 141(3), 549.CrossRefPubMedGoogle Scholar
  46. Van der Hallen, R., Lemmens, L., Steyaert, J., Noens, I., & Wagemans, J. (2017). Ensemble perception in autism spectrum disorder: Member-identification versus mean-discrimination. Autism Research.Google Scholar
  47. Wallace, M. T., & Stevenson, R. A. (2014). The construct of the multisensory temporal binding window and its dysregulation in developmental disabilities. Neuropsychologia, 64, 105-123.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Woynaroski, T. G., Kwakye, L. D., Foss-Feig, J. H., Stevenson, R. A., Stone, W. L., & Wallace, M. T. (2013). Multisensory speech perception in children with autism spectrum disorders. Journal of autism and developmental disorders, 43(12), 2891-2902.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Yang, J. W., Yoon, K. L., Chong, S. C., & Oh, K. J. (2013). Accurate but pathological: Social anxiety and ensemble coding of emotion. Cognitive Therapy and Research, 37(3), 572-578.CrossRefGoogle Scholar

Copyright information

© The Psychonomic Society, Inc. 2018

Authors and Affiliations

  • Matthew X. Lowe
    • 1
    • 2
  • Ryan A. Stevenson
    • 3
    • 4
  • Morgan D. Barense
    • 1
    • 5
  • Jonathan S. Cant
    • 2
  • Susanne Ferber
    • 1
    • 5
  1. 1.Department of Psychology (St. George)University of TorontoTorontoCanada
  2. 2.Department of Psychology (Scarborough)University of TorontoTorontoCanada
  3. 3.Department of PsychologyUniversity of Western OntarioLondonCanada
  4. 4.Brain and Mind InstituteUniversity of Western OntarioLondonCanada
  5. 5.Rotman Research InstituteBaycrestTorontoCanada

Personalised recommendations