Attention, Perception, & Psychophysics

, Volume 80, Issue 6, pp 1559–1570 | Cite as

Coping with adversity: Individual differences in the perception of noisy and accented speech

  • Drew J. McLaughlinEmail author
  • Melissa M. Baese-Berk
  • Tessa Bent
  • Stephanie A. Borrie
  • Kristin J. Van Engen


During speech communication, both environmental noise and nonnative accents can create adverse conditions for the listener. Individuals recruit additional cognitive, linguistic, and/or perceptual resources when faced with such challenges. Furthermore, listeners vary in their ability to understand speech in adverse conditions. In the present study, we compared individuals’ receptive vocabulary, inhibition, rhythm perception, and working memory with transcription accuracy (i.e., intelligibility scores) for four adverse listening conditions: native speech in speech-shaped noise, native speech with a single-talker masker, nonnative-accented speech in quiet, and nonnative-accented speech in speech-shaped noise. The results showed that intelligibility scores for similar types of adverse listening conditions (i.e., with the same environmental noise or nonnative-accented speech) significantly correlated with one another. Furthermore, receptive vocabulary positively predicted performance globally across adverse listening conditions, and working memory positively predicted performance for the nonnative-accented speech conditions. Taken together, these results indicate that some cognitive resources may be recruited for all adverse listening conditions, while specific additional resources may be engaged when people are faced with certain types of listening challenges.


Speech perception Working memory Inhibition 


  1. Adank, P., Davis, M. H., & Hagoort, P. (2012). Neural dissociation in processing noise and accent in spoken language comprehension. Neuropsychologia, 50, 77–84. doi: CrossRefPubMedGoogle Scholar
  2. Adank, P., Evans, B. G., Stuart-Smith, J., & Scott, S. K. (2009). Comprehension of familiar and unfamiliar native accents under adverse listening conditions. Journal of Experimental Psychology: Human Perception and Performance, 35, 520–529. doi: PubMedGoogle Scholar
  3. Banks, B., Gowen, E., Munro, K. J., & Adank, P. (2015). Cognitive predictors of perceptual adaptation to accented speech. Journal of the Acoustical Society of America, 137, 2015–2024. doi: CrossRefPubMedGoogle Scholar
  4. Benichov, J., Cox, L. C., Tun, P. A., & Wingfield, A. (2012). Word recognition within a linguistic context: Effects of age, hearing acuity, verbal ability, and cognitive function. Ear and Hearing, 33, 262–268. doi: CrossRefGoogle Scholar
  5. Bent, T., Baese-Berk, M., Borrie, S., & McKee, M. (2016). Individual differences in the perception of unfamiliar regional, nonnative, and disordered speech varieties. Journal of the Acoustical Society of America, 140, 3775–3786. doi: CrossRefPubMedGoogle Scholar
  6. Borovsky, A., Elman, J. L., & Fernald, A. (2012). Knowing a lot for one’s age: Vocabulary skill and not age is associated with anticipatory incremental sentence interpretation in children and adults. Journal of Experimental Child Psychology, 112, 417–436. doi: CrossRefPubMedPubMedCentralGoogle Scholar
  7. Borrie, S. A., Baese-Berk, M., Van Engen, K., & Bent, T. (2017). A relationship between processing speech in noise and dysarthric speech. Journal of the Acoustical Society of America, 141, 4660–4667. doi: CrossRefPubMedGoogle Scholar
  8. Borrie, S. A., Lansford, K. L., & Barrett, T. S. (2017). Rhythm perception and its role in perception and learning of dysrhythmic speech. Journal of Speech, Language, and Hearing Research, 60, 561–570. doi: CrossRefPubMedGoogle Scholar
  9. Borrie, S. A., McAuliffe, M. J., Liss, J. M., Kirk, C., O’Beirne, G. A., & Anderson, T. (2012). Familiarisation conditions and the mechanisms that underlie improved recognition of dysarthric speech. Language and Cognitive Processes, 27, 1039–1055. doi: CrossRefPubMedGoogle Scholar
  10. Bregman, A. S. (1990). Auditory scene analysis: The perceptual organization of sound. Cambridge, MA: MIT Press.Google Scholar
  11. Cooke, M. P., Garcia Lecumberri, M. L., & Barker, J. (2008). The foreign language cocktail effect party problem: Energetic and informational masking effects in non-native speech perception. Journal of the Acoustical Society of America, 123, 414–427.CrossRefPubMedGoogle Scholar
  12. Cutler, A., & Butterfield, S. (1992). Rhythmic cues to speech segmentation: Evidence from juncture misperception. Journal of Memory and Language, 31, 218–236.CrossRefGoogle Scholar
  13. Cutler, A., & Norris, D. (1988). The role of strong syllables in segmentation for lexical access. Journal of Experimental Psychology: Human Perception and Performance, 14, 113–121. doi: Google Scholar
  14. Davidson, L. (2011). Phonetic, phonemic, and phonological factors in cross-language discrimination of phonotactic contrasts. Journal of Experimental Psychology: Human Perception and Performance, 37, 270–282.PubMedGoogle Scholar
  15. Dunn, L. M., Dunn, D. M., & Pearson Assessment. (2007). PPVT-4: Peabody Picture Vocabulary Test. Minneapolis, MN: Pearson Assessment.Google Scholar
  16. Francis, A. L., MacPherson, M. K., Chandrasekaran, B., & Alvar, A. M. (2016). Autonomic nervous system responses during perception of masked speech may reflect constructs other than subjective listening effort. Frontiers in Psychology, 7, 263. doi: PubMedPubMedCentralGoogle Scholar
  17. Füllgrabe, C., & Rosen, S. (2016). Investigating the role of working memory in speech-in-noise identification for listeners with normal hearing. In Physiology, psychoacoustics and cognition in normal and impaired hearing (pp. 29–36). New York, NY: Springer. doi: CrossRefGoogle Scholar
  18. Gilbert, J. L., Tamati, T. N., & Pisoni, D. B. (2013). Development, reliability, and validity of PRESTO: A new high-variability sentence recognition test. Journal of the American Academy of Audiology, 24, 26–36. doi: CrossRefPubMedPubMedCentralGoogle Scholar
  19. Heinrich, A., Schneider, B. A., & Craik, F. I. M. (2008). Investigating the influence of continuous babble on auditory short-term memory performance. Quarterly Journal of Experimental Psychology, 65, 735–751. doi: CrossRefGoogle Scholar
  20. Janse, E. (2012). A non-auditory measure of interference predicts distraction by competing speech in older adults. Aging, Neuropsychology, and Cognition, 19, 741–758. doi: CrossRefGoogle Scholar
  21. Janse, E., & Adank, P. (2012). Predicting foreign-accent adaptation in older adults. Quarterly Journal of Experimental Psychology, 65, 1563–1585. doi: CrossRefGoogle Scholar
  22. Liss, J., Spitzer, S., Caviness, J., Adler, C., & Edwards, B. (1998). Syllabic strength and lexical boundary decisions in the perception of hypokinetic dysarthric speech. Journal of the Acoustical Society of America, 104, 2457–2466. doi:10.1121/1.423753Google Scholar
  23. Mattys, S. L., Davis, M. H., Bradlow, A. R., & Scott, S. K. (2012). Speech recognition in adverse conditions: A review. Language and Cognitive Processes, 27, 953–978. doi: CrossRefGoogle Scholar
  24. McAuliffe, M. J., Gibson, E. M. R., Kerr, S. E., Anderson, T., & LaShell, P. J. (2013). Vocabulary influences older and younger listeners’ processing of dysarthric speech. Journal of the Acoustical Society of America, 134, 1358–1368. doi: CrossRefPubMedGoogle Scholar
  25. Miettinen, I., Alku, P., Salminen, N., May, P. J. C., & Tiitinen, H. (2010). Responsiveness of the human auditory cortex to degraded speech sounds: Reduction of amplitude resolution vs. additive noise. Brain Research, 1367, 298–309. doi: CrossRefPubMedGoogle Scholar
  26. Miles, J. (2005). Tolerance and variance inflation factor. In B. Everitt & D. C. Howell (Eds.), Encyclopedia of Statistics in Behavioral Science. Hoboken, NJ: Wiley. doi: Google Scholar
  27. Mueller, S. T., & Piper, B. J. (2014). The Psychology Experiment Building Language (PEBL) and PEBL Test Battery. Journal of Neuroscience Methods, 222, 250–259. doi: CrossRefPubMedGoogle Scholar
  28. Munro, M., & Derwing, T. (1995). Foreign accent, comprehensibility, and intelligibility in the speech of second language learners. Language Learning, 45, 73–97. doi: CrossRefGoogle Scholar
  29. Norris, D., McQueen, J. M., & Cutler, A. (2003). Perceptual learning in speech. Cognitive Psychology, 47, 204–238. doi:10.1016/S0010-0285(03)00006-9Google Scholar
  30. Parbery-Clark, A., Skoe, E., Lam, C., & Kraus, N. (2009). Musician enhancement for speech-in-noise. Ear and Hearing, 30, 653–661. doi: CrossRefPubMedGoogle Scholar
  31. Pichora-Fuller, M. K., Schneider, B. A., & Daneman, M. (1995). How young and old adults listen to and remember speech in noise. Journal of the Acoustical Society of America, 97, 593–608. doi: CrossRefPubMedGoogle Scholar
  32. Rabbitt, P. M. A. (1968). Channel capacity, intelligibility and immediate memory. Quarterly Journal of Experimental Psychology, 20, 241–248. doi: CrossRefPubMedGoogle Scholar
  33. Rönnberg, J. (2003). Cognition in the hearing impaired and deaf as a bridge between signal and dialogue: A framework and a model. International Journal of Audiology, 42, S68–S76.CrossRefPubMedGoogle Scholar
  34. Rönnberg, J., Rudner, M., Foo, C., & Lunner, T. (2008). Cognition counts: A working memory system for ease of language understanding (ELU). International Journal of Audiology, 47(Suppl. 2), S99–S105. doi: CrossRefPubMedGoogle Scholar
  35. Slater, J., & Kraus, N. (2015). The role of rhythm in perceiving speech in noise: A comparison of percussionists, vocalists and non-musicians. Cognitive Processing, 17, 79–87. doi: CrossRefPubMedPubMedCentralGoogle Scholar
  36. Smith, M. R., Cutler, A., Butterfield, S., & Nimmo-Smith, I. (1989). The perception of rhythm and word boundaries in noise-masked speech. Journal of Speech, Language, and Hearing Research, 32, 912–920.CrossRefGoogle Scholar
  37. Smith, S. L., Pichora-Fuller, M. K., & Alexander, G. (2016). Development of the word auditory recognition and recall measure: A working memory test for use in rehabilitative audiology. Ear and Hearing, 37, e360–e376. doi: CrossRefPubMedGoogle Scholar
  38. Song, X. D., Garnett, R., & Barbour, D. L. (2017). Psychometric function estimation by probabilistic classification. Journal of the Acoustical Society of America, 141, 2513–2525. doi:10.1121/1.4979594Google Scholar
  39. Song, X. D., Wallace, B. M., Gardner, J. R., Ledbetter, N. M., Weinberger, K. Q., & Barbour, D. L. (2015). Fast, continuous audiogram estimation using machine learning. Ear and Hearing, 36, e326–e335. doi: CrossRefPubMedPubMedCentralGoogle Scholar
  40. Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18, 643–662. doi:10.1037/h0054651Google Scholar
  41. Taitelbaum-Swead, R., & Fostick, L. (2016). The effect of age and type of noise on speech perception under conditions of changing context and noise levels. Folia Phoniatrica et Logopaedica, 68, 16–21. doi: CrossRefPubMedGoogle Scholar
  42. Tamati, T. N., Gilbert, J. L., & Pisoni, D. B. (2013). Some factors underlying individual differences in speech recognition on PRESTO: A first report. Journal of the American Academy of Audiology, 24, 616–634. doi: CrossRefPubMedPubMedCentralGoogle Scholar
  43. Van Engen, K. J. (2012). Speech-in-speech recognition: A training study. Language and Cognitive Processes, 27, 1089–1107. doi: CrossRefGoogle Scholar
  44. Van Engen, K. J., & Peelle, J. E. (2014). Listening effort and accented speech. Frontiers in Human Neuroscience, 8, 577. doi: PubMedPubMedCentralGoogle Scholar
  45. Wallentin, M., Nielsen, A. H., Friis-Olivarius, M., Vuust, C., & Vuust, P. (2010). The Musical Ear Test, a new reliable test for measuring musical competence. Learning and Individual Differences, 20, 188–196. doi: CrossRefGoogle Scholar
  46. White, L., & Mattys, S. L. (2007). Rhythmic typology and variation in first and second languages. Amsterdam Studies in the Theory and History of Linguistic Science (Series 4), 282, 237.Google Scholar
  47. Wightman, F. L., Kistler, D. J., & O’Bryan, A. (2010). Individual differences and age effects in a dichotic informational masking paradigm. Journal of the Acoustical Society of America, 128, 270–279. doi: CrossRefPubMedGoogle Scholar

Copyright information

© The Psychonomic Society, Inc. 2018

Authors and Affiliations

  • Drew J. McLaughlin
    • 1
    • 2
    Email author
  • Melissa M. Baese-Berk
    • 1
  • Tessa Bent
    • 3
  • Stephanie A. Borrie
    • 4
  • Kristin J. Van Engen
    • 5
  1. 1.Department of LinguisticsUniversity of OregonEugeneUSA
  2. 2.Department of Psychological and Brain SciencesWashington University in St. LouisSt. LouisUSA
  3. 3.Department of Speech and Hearing SciencesIndiana UniversityBloomingtonUSA
  4. 4.Department of Communicative Disorders and Deaf EducationUtah State UniversityLoganUSA
  5. 5.Department of Psychological and Brain SciencesWashington UniversitySt. LouisUSA

Personalised recommendations