Advertisement

Attention, Perception, & Psychophysics

, Volume 80, Issue 5, pp 1193–1204 | Cite as

Out of sight, out of mind: Occlusion and eye closure destabilize moving bistable structure-from-motion displays

  • Alexander Pastukhov
  • Johanna Prasch
  • Claus-Christian Carbon
Article

Abstract

Our brain constantly tries to anticipate the future by using a variety of memory mechanisms. Interestingly, studies using the intermittent presentation of multistable displays have shown little perceptual persistence for interruptions longer than a few hundred milliseconds. Here we examined whether we can facilitate the perceptual stability of bistable displays following a period of invisibility by employing a physically plausible and ecologically valid occlusion event sequence, as opposed to the typical intermittent presentation, with sudden onsets and offsets. To this end, we presented a bistable rotating structure-from-motion display that was moving along a linear horizontal trajectory on the screen and either was temporarily occluded by another object (a cardboard strip in Exp. 1, a computer-generated image in Exp. 2) or became invisible due to eye closure (Exp. 3). We report that a bistable rotation direction reliably persisted following occlusion or interruption only (1) if the pre- and postinterruption locations overlapped spatially (an occluder with apertures in Exp. 2 or brief, spontaneous blinks in Exp. 3) or (2) if an object’s size allowed for the efficient grouping of dots on both sides of the occluding object (large objects in Exp. 1). In contrast, we observed no persistence whenever the pre- and postinterruption locations were nonoverlapping (large solid occluding objects in Exps. 1 and 2 and long, prompted blinks in Exp. 3). We report that the bistable rotation direction of a moving object persisted only for spatially overlapping neural representations, and that persistence was not facilitated by a physically plausible and ecologically valid occlusion event.

Keywords

Bistable perception Multistable perception Predictive perception Visual memory Tunnel effect Structure from motion Ambiguity Persistence 

Supplementary material

13414_2018_1505_MOESM1_ESM.mov (1.2 mb)
Video 1. Experiment 1: Width ratio of 1:1. (MOV 1204 kb)
13414_2018_1505_MOESM2_ESM.mov (1.1 mb)
Video 2. Experiment 1: Width ratio of 1:1, with halo. (MOV 1145 kb)
13414_2018_1505_MOESM3_ESM.mov (2.8 mb)
Video 3. Experiment 1: Width ratio of 1.3:1. (MOV 2835 kb)
13414_2018_1505_MOESM4_ESM.mov (1.3 mb)
Video 4. Experiment 1: Width ratio of 1.3:1, with halo. (MOV 1377 kb)
Video 5.

Experiment 1: Width ratio of 2:1. (MOV 1758 kb)

Video 6.

Experiment 1: Width ratio of 2:1, with halo. (MOV 1712 kb)

Video 7.

Experiment 2: Visible occluding object. Aperture area: 5%. (MOV 1193 kb)

Video 8.

Experiment 2: Camouflaged occluding object. Aperture area: 5%. (MOV 1204 kb)

Video 9.

Experiment 2: Visible occluding object. Aperture area: 50%. (MOV 1281 kb)

Video 10.

Experiment 2: Camouflaged occluding object. Aperture area: 50%. (MOV 1275 kb)

13414_2018_1505_MOESM11_ESM.mov (1.3 mb)
Video 11. Experiment 3. (MOV 1316 kb)

References

  1. Adams, P. A. (1954). The effect of past experience on the perspective reversal of a tridimensional figure. American Journal of Psychology, 67, 708–710.  https://doi.org/10.2307/1418496 CrossRefPubMedGoogle Scholar
  2. Amano, K., Wandell, B. A, & Dumoulin, S. O. (2009). Visual field maps, population receptive field sizes, and visual field coverage in the human MT+ complex. Journal of Neurophysiology, 102, 2704–2718.  https://doi.org/10.1152/jn.00102.2009 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using (lme4). Journal of Statistical Software, 67, 1–48.  https://doi.org/10.18637/jss.v067.i01 CrossRefGoogle Scholar
  4. Blake, R., Sobel, K. V., & Gilroy, L. A. (2003). Visual motion retards alternations between conflicting perceptual interpretations. Neuron, 39, 869–878.  https://doi.org/10.1016/S0896-627300495-1 CrossRefPubMedGoogle Scholar
  5. Bolstad, W. M., & Curran, J. M. (2016). Introduction to Bayesian statistics. Hoboken: Wiley.Google Scholar
  6. Burke, L. (1952). On the tunnel effect. Quarterly Journal of Experimental Psychology, 4, 121–138.  https://doi.org/10.1080/17470215208416611 CrossRefGoogle Scholar
  7. Carter, O., & Cavanagh, P. (2007). Onset rivalry: Brief presentation isolates an early independent phase of perceptual competition. PLoS ONE, 2, e343.  https://doi.org/10.1371/journal.pone.0000343 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Coltheart, M. (1980). Iconic memory and visible persistence. Perception & Psychophysics, 27, 183–228.  https://doi.org/10.3758/BF03204258 CrossRefGoogle Scholar
  9. Denison, R. N., Piazza, E. A., & Silver, M. A. (2011). Predictive context influences perceptual selection during binocular rivalry. Frontiers in Human Neuroscience, 5, 166:1–11.  https://doi.org/10.3389/fnhum.2011.00166 Google Scholar
  10. Flombaum, J. I., Kundey, S. M., Santos, L. R., & Scholl, B. J. (2004). Dynamic object individuation in rhesus macaques: A study of the tunnel effect. Psychological Science, 15, 795–800.  https://doi.org/10.1111/j.0956-7976.2004.00758.x CrossRefPubMedGoogle Scholar
  11. Flombaum, J. I., & Scholl, B. J. (2006). A temporal same-object advantage in the tunnel effect: Facilitated change detection for persisting objects. Journal of Experimental Psychology. Human Perception and Performance, 32, 840–853.  https://doi.org/10.1037/0096-1523.32.4.840 CrossRefPubMedGoogle Scholar
  12. Hupé, J.-M., Lamirel, C., & Lorenceau, J. (2009). Pupil dynamics during bistable motion perception. Journal of Vision, 9(7), 10.  https://doi.org/10.1167/9.7.10 CrossRefPubMedGoogle Scholar
  13. Hyo, W. Y., Chung, J. Y., Song, M. S., & Park, H. W. (2005). Neural correlates of eye blinking; Improved by simultaneous fMRI and EOG measurement. Neuroscience Letters, 381, 26–30.  https://doi.org/10.1016/j.neulet.2005.01.077 CrossRefGoogle Scholar
  14. Kawachi, Y., & Gyoba, J. (2006). A new response-time measure of object persistence in the tunnel effect. Acta Psychologica, 123, 73–90.  https://doi.org/10.1016/j.actpsy.2006.04.003 CrossRefPubMedGoogle Scholar
  15. Klink, P. C., van Ee, R., Nijs, M. M., Brouwer, G. J., Noest, A. J., & van Wezel, R. J. A. (2008). Early interactions between neuronal adaptation and voluntary control determine perceptual choices in bistable vision. Journal of Vision, 8(5), 16.1–18.  https://doi.org/10.1167/8.5.16 CrossRefGoogle Scholar
  16. Knapen, T. H. J., Brascamp, J. W., Adams, W. J., & Graf, E. W. (2009). The spatial scale of perceptual memory in ambiguous figure perception. Journal of Vision, 9(13), 16.1–12.  https://doi.org/10.1167/9.13.16 CrossRefGoogle Scholar
  17. Kornmeier, J., & Bach, M. (2004). Early neural activity in Necker-cube reversal: Evidence for low-level processing of a gestalt phenomenon. Psychophysiology, 41, 1–8.  https://doi.org/10.1046/j.1469-8986.2003.00126.x CrossRefPubMedGoogle Scholar
  18. Kuznetsova, A., Bruun Brockhoff, P., & Haubo Bojesen Christensen, R. (2016). lmerTest: Tests in linear mixed effects models. Retrieved from https://cran.r-project.org/package=lmerTest
  19. Lee, D., Conroy, M. L., McGreevy, B. P., & Barraclough, D. J. (2004). Reinforcement learning and decision making in monkeys during a competitive game. Cognitive Brain Research, 22, 45–58.  https://doi.org/10.1016/j.cogbrainres.2004.07.007 CrossRefPubMedGoogle Scholar
  20. Lee, D., McGreevy, B. P., & Barraclough, D. J. (2005). Learning and decision making in monkeys during a rock–paper–scissors game. Brain Research. Cognitive Brain Research, 25, 416–30.  https://doi.org/10.1016/j.cogbrainres.2005.07.003 CrossRefPubMedGoogle Scholar
  21. Leopold, D. A., Wilke, M., Maier, A., & Logothetis, N. K. (2002). Stable perception of visually ambiguous patterns. Nature Neuroscience, 5, 605–9.  https://doi.org/10.1038/nn851 CrossRefPubMedGoogle Scholar
  22. Maier, A., Wilke, M., Logothetis, N. K., & Leopold, D. A. (2003). Perception of temporally interleaved ambiguous patterns. Current Biology, 13, 1076–1085.  https://doi.org/10.1016/S0960-982200414-7 CrossRefPubMedGoogle Scholar
  23. Maloney, L. T., Martello, M. F. D., Sahm, C., & Spillmann, L. (2005). Past trials influence perception of ambiguous motion quartets through pattern completion. Proceedings of the National Academy of Sciences, 102, 3164–3169.  https://doi.org/10.1073/pnas.0407157102 CrossRefGoogle Scholar
  24. McDermott, J., & Adelson, E. H. (2004). The geometry of the occluding contour and its effect on motion interpretation. Journal of Vision, 4, 944–954.  https://doi.org/10.1167/4.10.9 PubMedGoogle Scholar
  25. Melcher, D. (2007). Predictive remapping of visual features precedes saccadic eye movements. Nature Neuroscience, 10, 903–907.  https://doi.org/10.1038/nn1917 CrossRefPubMedGoogle Scholar
  26. Morey, R. D., & Rouder, J. N. (2015). BayesFactor: Computation of Bayes factors for common designs. Retrieved from https://cran.r-project.org/package=BayesFactor
  27. Mossbridge, J. A., Ortega, L., Grabowecky, M., & Suzuki, S. (2013). Rapid volitional control of apparent motion during percept generation. Attention, Perception, & Psychophysics, 75, 1486–1495.  https://doi.org/10.3758/s13414-013-0504-3 CrossRefGoogle Scholar
  28. Noest, A. J., van Ee, R., Nijs, M. M., & van Wezel, R. J. A. (2007). Percept–choice sequences driven by interrupted ambiguous stimuli: A low-level neural model. Journal of Vision, 7(8), 10.  https://doi.org/10.1167/7.8.10 CrossRefPubMedGoogle Scholar
  29. O’Regan, J. K., Deubel, H., Clark, J. J., & Rensink, R. A. (2000). Picture changes during blinks: Looking without seeing and seeing without looking. Visual Cognition, 7, 191–211.  https://doi.org/10.1080/135062800394766 CrossRefGoogle Scholar
  30. Orbach, J., Ehrlich, D., & Heath, H. A. (1963). Reversibility of the Necker cube: I. An examination of the concept of “satiation of orientation.” Perceptual and Motor Skills, 17, 439–458.  https://doi.org/10.2466/pms.1963.17.2.439 CrossRefPubMedGoogle Scholar
  31. Orbach, J., Ehrlich, D., & Vainstein, E. (1963). Reversibility of the Necker cube: III. Effects of interpolation on reversal rate of the cube presented repetitively. Perceptual and Motor Skills, 17, 571–582.  https://doi.org/10.2466/pms.1963.17.2.571 CrossRefPubMedGoogle Scholar
  32. Orban, G. A. (2011). The extraction of 3-D shape in the visual system of human and nonhuman primates. Annual Review of Neuroscience, 34, 361–388.  https://doi.org/10.1146/annurev-neuro-061010-113819 CrossRefPubMedGoogle Scholar
  33. Pastukhov, A. (2017). edfImport: Matlab interface to Eyelink EDF files. Open Science Framework. Retrieved January 2017 from https:/osf.io/fxumn.  https://doi.org/10.17605/OSF.IO/FXUMN
  34. Pastukhov, A., & Braun, J. (2011). Cumulative history quantifies the role of neural adaptation in multistable perception. Journal of Vision, 11(10), 12.  https://doi.org/10.1167/11.10.12 CrossRefPubMedGoogle Scholar
  35. Pastukhov, A., & Braun, J. (2013). Structure-from-motion: Dissociating perception, neural persistence, and sensory memory of illusory depth and illusory rotation. Attention, Perception, & Psychophysics, 75, 322–340.  https://doi.org/10.3758/s13414-012-0390-0 CrossRefGoogle Scholar
  36. Pastukhov, A., Vonau, V., & Braun, J. (2012). Believable change: Bistable reversals are governed by physical plausibility. Journal of Vision, 12(1), 17.  https://doi.org/10.1167/12.1.17 CrossRefPubMedGoogle Scholar
  37. Pearson, J., & Brascamp, J. W. (2008). Sensory memory for ambiguous vision. Trends in Cognitive Sciences, 12, 334–41.  https://doi.org/10.1016/j.tics.2008.05.006 CrossRefPubMedGoogle Scholar
  38. R Core Team. (2016). R: A Language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.r-project.org/
  39. Scholl, B. J., & Pylyshyn, Z. W. (1999). Tracking multiple items through occlusion: Clues to visual objecthood. Cognitive Psychology, 38, 259–290.  https://doi.org/10.1006/cogp.1998.0698 CrossRefPubMedGoogle Scholar
  40. Song, C., & Yao, H. (2009). Duality in binocular rivalry: Distinct sensitivity of percept sequence and percept duration to imbalance between monocular stimuli. PLoS ONE, 4, e6912.  https://doi.org/10.1371/journal.pone.0006912 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Tougas, Y., & Bregman, A. S. (1990). Auditory streaming and the continuity illusion. Perception & Psychophysics, 47, 121–126.  https://doi.org/10.3758/BF03205976 CrossRefGoogle Scholar
  42. Van Dam, L. C. J., & Van Ee, R. (2005). The role of (micro)saccades and blinks in perceptual bi-stability from slant rivalry. Vision Research, 45, 2417–2435.  https://doi.org/10.1016/j.visres.2005.03.013 CrossRefPubMedGoogle Scholar
  43. Volkmann, F., Riggs, L., & Moore, R. (1980). Eyeblinks and visual suppression. Science, 207, 900–902.  https://doi.org/10.1126/science.7355270 CrossRefPubMedGoogle Scholar
  44. Wexler, M., Duyck, M., & Mamassian, P. (2015). Persistent states in vision break universality and time invariance. Proceedings of the National Academy of Sciences, 112, 14990–14995.  https://doi.org/10.1073/pnas.1508847112 CrossRefGoogle Scholar
  45. Wickham, H. (2009). ggplot2: Elegant graphics for data analysis. New York: Springer. Retrieved from ggplot2.org CrossRefGoogle Scholar
  46. Wolfe, J. M. (1984). Reversing ocular dominance and suppression in a single flash. Vision Research, 24, 471–478.  https://doi.org/10.1016/0042-6989(84)90044-0 CrossRefPubMedGoogle Scholar

Copyright information

© The Psychonomic Society, Inc. 2018

Authors and Affiliations

  • Alexander Pastukhov
    • 1
    • 2
  • Johanna Prasch
    • 1
  • Claus-Christian Carbon
    • 1
    • 2
  1. 1.Department of General Psychology and MethodologyUniversity of BambergBambergGermany
  2. 2.Forschungsgruppe EPÆG (Ergonomics, Psychological Æsthetics, Gestalt)BambergGermany

Personalised recommendations