The time for action is at hand

  • David A. Rosenbaum
  • Iman Feghhi


The science of mental life and behavior has paid scant attention to the means by which mental life is translated into physical behavior. Why this is so was the topic of a 2005 American Psychologist article whose main title was “The Cinderella of Psychology.” In the present article, we briefly review some of the reasons why motor control was relegated to the sidelines of psychology. Then we point to work showing that experimental psychologists have much to contribute to research on action generation. We focus on studies showing that actions are generated in a way that, at least by default, minimize changes between successive actions. The method is computationally as well as physically economical but also requires consideration of costs, including costs of different kinds. How such costs are compared is discussed in the next section. The final section offers comments about the future of psychologically focused action research. Two additional themes of the review concern methods for studying action generation. First, much can be learned through naturalistic observation. Second, subsequent experiments, designed to check naturalistic observations, can use very simple equipment and procedures. This can make the study of action generation easy to pursue in the psychology laboratory.


Motor control Perception and action Memory: Visual working and shortterm memory 



  1. Abrams, R. A., & Balota, D. A. (1991). Mental chronometry: Beyond reaction time. Psychological Science, 2, 153–157.CrossRefGoogle Scholar
  2. Abrams, R. A., Davoli, C. C., Du, F., Knapp, W. K., & Paull, D. (2008). Altered vision near the hands. Cognition, 107, 1035–1047.CrossRefGoogle Scholar
  3. Balota, D. A., & Abrams, R. A. (1995). Mental chronometry: Beyond onset latencies in the lexical decision task. Journal of Experimental Psychology: Learning, Memory & Cognition, 21, 1289–1302.Google Scholar
  4. Banaji, M. R., & Greenwald, A. G. (2016). Blindspot: Hidden biases of good people. New York, NY: Bantam.Google Scholar
  5. Beilock, S. L. (2010). Choke: What the secrets of the brain reveal about getting it right when you have to. New York, NY: Simon & SchusterGoogle Scholar
  6. Beilock, S. (2015). How the body knows its mind. New York: Simon & Schuster.Google Scholar
  7. Cohen, R. G., & Rosenbaum, D. A. (2004). Where objects are grasped reveals how grasps are planned: Generation and recall of motor plans. Experimental Brain Research, 157, 486–495.CrossRefGoogle Scholar
  8. Comalli, D. M., Keen, R., Abraham, E. S., Foo, V. J., Lee, M. H., & Adolph, K. E. (2016). The development of tool use: Planning for end-state comfort. Developmental Psychology, 52, 1878–1892.CrossRefGoogle Scholar
  9. Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24, 87–114.CrossRefGoogle Scholar
  10. Feghhi, I., & Rosenbaum, D. A. (2018). Judging the difficulty of different kinds of tasks. Manuscript submitted for publication.Google Scholar
  11. Fitts, P. M. (1954). The information capacity of the human motor system in controlling the amplitude of movement. Journal of Experimental Psychology, 47, 381.CrossRefGoogle Scholar
  12. Fitts, P. M. (1964). Perceptual-motor skill learning. In A. W. Melton (Ed.), Categories of human learning (pp. 243–285). New York, NY: Academic Press.CrossRefGoogle Scholar
  13. Fitts, P. M., & Peterson, J. R. (1964). Information capacity of discrete motor responses. Journal of Experimental Psychology, 67, 103–112.CrossRefGoogle Scholar
  14. Fitts, P. M., & Seeger, C. M. (1953). S-R compatibility: Spatial characteristics of stimulus and response codes. Journal of Experimental Psychology, 46, 199–210.CrossRefGoogle Scholar
  15. Gibson, J. J. (1950). Perception of the visual world. Boston, MA: Houghton-Mifflin.Google Scholar
  16. Gibson, J. J. (1977). The theory of affordances. In R. E. Shaw & J. Bransford (Eds.), Perceiving, acting, and knowing. Hillsdale, NJ: Erlbaum.Google Scholar
  17. Giles, O. T., Shire, K. A., Hill, L. J., Mushtaq, F., Waterman, A., Holt, R. J., . . . Mon-Williams, M. (2018). Hitting the target: Mathematical attainment in children is related to interceptive-timing ability. Psychological Science. Advance online publication. doi:
  18. Glanzer, M., & Cunitz, A. R. (1966). Two storage mechanisms in free recall. Journal of Verbal Learning and Verbal Behavior, 5, 351–360.CrossRefGoogle Scholar
  19. Glass, A. L. (2016). Cognition (3rd ed.). New York, NY: Cambridge University Press.CrossRefGoogle Scholar
  20. Gleitman, H. (1981). Psychology. New York, NY: W. W. Norton.Google Scholar
  21. Goldin-Meadow, S., & Wagner, S. M. (2005). How our hands help us learn. Trends in Cognitive Sciences, 9, 234–241.CrossRefGoogle Scholar
  22. Goodnow, J. J., & Levine, R. (1973). The grammar of action: Sequence and syntax in children’s copying. Cognitive Psychology, 4, 82–98.CrossRefGoogle Scholar
  23. Graziano M. S. A. (2008). The intelligent movement machine: An ethological perspective on the primate motor system. Oxford, UK: Oxford University Press.Google Scholar
  24. Henry, F. M., & Rogers, D. E. (1960). Increased response latency for complicated movements and a “memory drum” theory of neuromotor reaction. Research Quarterly, 31, 448–458.Google Scholar
  25. Herbort, O., Büschelberger, J., & Janczyk, M. (2018). Preschool children adapt grasping movements to upcoming object manipulations: Evidence from a dial rotation task. Journal of Experimental Child Psychology, 167, 62–77.CrossRefGoogle Scholar
  26. Hommel, B., Brown, S. B., & Nattkemper, D. (2016). Human action control. Basel: Springer.CrossRefGoogle Scholar
  27. Hommel, B., Müsseler, J., Aschersleben, G., & Prinz, W. (2001). The theory of event coding: A framework for perception and action planning. Behavioral and Brain Sciences, 24, 849–937.CrossRefGoogle Scholar
  28. James, W. (1890). The Principles of Psychology. New York: Holt.Google Scholar
  29. Janczyk, M., & Kunde, W. (2014). The role of effect grouping in free-choice response selection. Acta Psychologica, 150, 49–54.CrossRefGoogle Scholar
  30. Jax, S. A., & Rosenbaum, D. A. (2007). Hand path priming in manual obstacle avoidance: Evidence that the dorsal stream does not only control visually guided actions in real time. Journal of Experimental Psychology: Human Perception and Performance, 33, 425–441.Google Scholar
  31. Jeannerod, M. (2006). Motor cognition: What action tells the self. New York, NY: Oxford University Press.CrossRefGoogle Scholar
  32. Jovanovic, B., & Schwarzer, G. (2011). Learning to grasp efficiently: The development of motor planning and the role of observational learning. Vision Research, 51, 945–954.CrossRefGoogle Scholar
  33. Kieras, D. E., & Meyer, D. E. (1997). An overview of the EPIC architecture for cognition and performance with application to human-computer interaction. Human-Computer Interaction, 12, 391–438.CrossRefGoogle Scholar
  34. Klapp, S. T. (1977). Reaction time analysis of programmed control. Exercise and sport Sciences Reviews, 5, 231–253.CrossRefGoogle Scholar
  35. Lewis, M. (1993). The development of deception. In M. Lewis & C. Saarni (Eds.), Lying and deception in everyday life (pp. 90–105). New York, NY: Guilford Press.Google Scholar
  36. Logan, S. W., & Fischman, M. G. (2011). The relationship between end-state comfort effects and memory performance in serial and free recall, Acta Psychologica, 137, 292–299.CrossRefGoogle Scholar
  37. Logan, S. W., & Fischman, M. G. (2015). The death of recency: Relationship between end-state comfort and serial position effects in serial recall: Logan and Fischman (2011) revisited. Human Movement Science, 44, 11–21.CrossRefGoogle Scholar
  38. MacDonald, M. C. (2016). Speak, act, remember: The language-production basis of serial order and maintenance in verbal memory. Current Directions in Psychological Science, 25, 47–53.CrossRefGoogle Scholar
  39. McCarthy, D. (1933). Language development. In C. Murchison (Ed.), The international university series in psychology:. A handbook of child psychology (pp. 329–373). New York, NY: Atheneum.Google Scholar
  40. Merleau-Ponty, M. (1945). Phénoménologie de la perception. Paris, France: Gallimard.Google Scholar
  41. Meyer, D. E., Osman, A., M., Irwin, D. E., & Yantis, S. (1988a). Modern mental chronometry. Biological Psychology, 26, 3–67.Google Scholar
  42. Meyer, D. E., & Schvaneveldt, R. W. (1971). Facilitation in recognizing pairs of words: Evidence of a dependence between retrieval operations. Journal of Experimental Psychology, 90, 227–234.CrossRefGoogle Scholar
  43. Meyer, D. E., Abrams, R. A., Kornblum, S., Wright, C. E., & Smith, J. E. K. (1988b). Optimality in human motor performance: Ideal control of rapid aimed movements. Psychological Review, 95, 340–370.CrossRefGoogle Scholar
  44. Meyer, D. E., Smith, J. E. K., Kornblum, S., Abrams, R. A., & Wright, C. E. (1990). Speed-accuracy tradeoffs in aimed movements: Toward a theory of rapid voluntary action. In M. Jeannerod (Ed.), Attention and performance XIII: Motor representation and control (pp. 173–226), Hillsdale, NJ: Erlbaum.Google Scholar
  45. Neisser, U. (1967). Cognitive psychology. New York, NY: Appleton-Century-Crofts.Google Scholar
  46. Nissen, M. J., & Bullemer, P. (1987). Attentional requirements of learning: Evidence from performance measures. Cognitive Psychology, 19, 1–32.CrossRefGoogle Scholar
  47. Polanyi, M. (1958). Personal Knowledge: Towards a post-critical philosophy. Chicago, IL: University of Chicago Press.Google Scholar
  48. Prinz, W. (1990). A common coding approach to perception and action. In O. Neumann & W. Prinz (Eds.), Relationships between perception and action: Current approaches (pp. 167–201). Berlin, Germany: Springer.CrossRefGoogle Scholar
  49. Proctor, R. W., & Vu, K.-P. L. (2006). Stimulus-response compatibility principles: Data, theory, and application. Boca Raton, FL: CRC Press.Google Scholar
  50. Proffitt, D. R., Bhalla, M., Gossweiler, R., & Midgett, K. (1995). Perceiving geographical slant. Psychonomic Bulletin & Review, 2, 409–428.CrossRefGoogle Scholar
  51. Reed, C. L., Grubb, J. D., & Steele, C. (2006). Hands up: Attentional prioritization of space near the hand. Journal of Experimental Psychology: Human Perception & Performance, 32, 166–177.Google Scholar
  52. Rosenbaum, D. A. (1987). Successive approximations to a model of human motor programming. Psychology of Learning and Motivation, 21, 153–182.CrossRefGoogle Scholar
  53. Rosenbaum, D. A. (2005). The Cinderella of psychology: The neglect of motor control in the science of mental life and behavior. American Psychologist, 60, 308–317.CrossRefGoogle Scholar
  54. Rosenbaum, D. A. (2010). Human motor control (2nd ed.). San Diego, CA: Elsevier/Academic Press.Google Scholar
  55. Rosenbaum, D. A. (2012). The tiger on your tail: Choosing between temporally extended behaviors. Psychological Science, 23, 855–860.CrossRefGoogle Scholar
  56. Rosenbaum, D. A. (2017). Knowing hands—The cognitive psychology of manual control. New York: NY: Cambridge University Press.CrossRefGoogle Scholar
  57. Rosenbaum, D. A., Brach, M., & Semenov, A. (2011). Behavioral ecology meets motor behavior: Choosing between walking and reaching paths. Journal of Motor Behavior, 43, 131–136.CrossRefGoogle Scholar
  58. Rosenbaum, D. A., Carlson, R. A., & Gilmore, R. O. (2001). Acquisition of intellectual and perceptual-motor skills. Annual Review of Psychology, 52, 453–470.CrossRefGoogle Scholar
  59. Rosenbaum, D. A., Halloran, E., & Cohen, R. G. (2006). Grasping movement plans. Psychonomic Bulletin and Review, 13, 918–922.CrossRefGoogle Scholar
  60. Rosenbaum, D. A., & Jorgensen, M. J. (1992). Planning macroscopic aspects of manual control. Human Movement Science, 11, 61–69.CrossRefGoogle Scholar
  61. Rosenbaum, D. A., Marchak, F., Barnes, H. J., Vaughan, J., Slotta, J., & Jorgensen, M. (1990). Constraints for action selection: Overhand versus underhand grips. In M. Jeannerod (Ed.), Attention and performance 13: Motor representation and control (pp. 321–342). Hillsdale, NJ: Erlbaum.Google Scholar
  62. Rosenbaum, D. A., Weber, R. J., Hazelett, W. M., & Hindorff, V. (1986). The parameter remapping effect in human performance: Evidence from tongue twisters and finger fumblers. Journal of Memory and Language, 25, 710–725.CrossRefGoogle Scholar
  63. Ryle, G. (1949). The concept of mind. New York, NY: Barnes & Noble.Google Scholar
  64. Schmidt, R. A., & Bjork, R. A. (1992). New conceptualizations of practice: Common principles in three paradigms suggest new concepts for training. Psychological Science, 3, 207–214.CrossRefGoogle Scholar
  65. Schmidt, R. A., Lee, T., Winstein, C., Wulf, G., & Zelaznik, H. (2018). Motor control and learning (6th ed.). Champaign, IL: Human Kinetics.Google Scholar
  66. Smith, E. E., & Kosslyn, S. M. (2007). Cognitive psychology. Upper Saddle River, NJ: Pearson/Prentice Hall.Google Scholar
  67. Song, J.-Y., & Nakayama, K. (2009). Hidden cognitive states revealed in choice reaching tasks. Trends in Cognitive Science, 13, 360–366.CrossRefGoogle Scholar
  68. Spiegel, M. A., Koester, D., Weigelt, M., & Schack, T. (2012). The costs of changing an intended action: Movement planning, but not execution, interferes with verbal working memory. Neuroscience Letters, 509, 8286.Google Scholar
  69. Spivey, M. (2007). The continuity of mind. New York, NY: Oxford University Press.Google Scholar
  70. Sternberg, S., Monsell, S., Knoll, R. L., & Wright, C. E. (1978). The latency and duration of rapid movement sequences: Comparisons of speech and typewriting. In G. E. Stelmach (Ed.), Information processing in motor control and learning (pp. 117–152). New York, NY: Academic Press.CrossRefGoogle Scholar
  71. Stevens, S. S. (Ed.). (1951). Handbook of experimental psychology. Oxford, UK: Wiley.Google Scholar
  72. Tanenhaus, M. K., Spivey-Knowlton, M., Eberhard, K., & Sedivy, J. (1995). Integration of visual and linguistic information in spoken language comprehension. Science, 268, 1632–1634.CrossRefGoogle Scholar
  73. Thelen, E. (1995). Motor development: A new synthesis. American Psychologist, 50, 79–95.CrossRefGoogle Scholar
  74. Thelen, E., & Fisher, D. M. (1982). Newborn stepping: An explanation for a “disappearing” reflex. Developmental Psychology, 18, 760–775.CrossRefGoogle Scholar
  75. Thomas, L. E. (2017). Action experience drives visual-processing biases near the hands. Psychological Science, 28, 124–131.CrossRefGoogle Scholar
  76. Tipper, S. P., Lortie, C., & Baylis, G. C. (1992). Selective reaching: Evidence for action-centered attention. Journal of Experimental Psychology: Human Perception and Performance, 18, 891–905.Google Scholar
  77. van der Wel, P. R., Fleckenstein, R., Jax, S. A., & Rosenbaum, D. A. (2007). Hand path priming in manual obstacle avoidance: Evidence for abstract spatio-temporal forms in human motor control. Journal of Experimental Psychology: Human Perception and Performance, 33, 1117–1126.Google Scholar
  78. Weigelt, W., Rosenbaum, D. A., Huelshorst, S., & Schack, T. (2009). Moving and memorizing: Motor planning modulates the recency effect in serial and free recall. Acta Psychologica, 132, 68–79.CrossRefGoogle Scholar
  79. Weigelt, M., & Schack, T. (2010). The development of end-state comfort planning in preschool children. Experimental Psychology, 57, 476–482.CrossRefGoogle Scholar
  80. Welsh, T. N., Elliott, D., & Weeks, D. J. (1999). Hand deviations toward distractors Evidence for response competition. Experimental Brain Research, 127, 207–212.CrossRefGoogle Scholar
  81. Witt, J. K. (2011). Action’s effect on perception. Current Directions in Psychological Science, 20, 201–206.CrossRefGoogle Scholar
  82. Woodworth, R. S. (1899). The accuracy of voluntary movement. Psychological Review, 3, 1–119.Google Scholar
  83. Woodworth, R. S. (1938). Experimental psychology. New York, NY: Holt.Google Scholar
  84. Wulf, G., & Lewthwaite, R. (2016). Optimizing performance through intrinsic motivation and attention for learning: The OPTIMAL theory of motor learning. Psychonomic Bulletin & Review, 23(5), 1382–1414. CrossRefGoogle Scholar
  85. Wunsch, K., Henning, A., Aschersleben, G., & Weigelt, M. (2013). A systematic review of the end-state comfort effect in normally developing children and in children with developmental disorders. Journal of Motor Learning and Development, 1, 59–76.CrossRefGoogle Scholar
  86. Wunsch, K., Weiss, D. J., Schack, T., & Weigelt, M. (2014). Second-order motor planning in children: Insights from a cup-manipulation-task. Psychological Research, 1–9. Advance online publication. doi:
  87. Yang, X. J., Wickens, C. D., Park, T., Fong, L., & Siah, K. T. (2015). Effects of information access cost and accountability on medical residents’ information retrieval strategy and performance during prehandover preparation: Evidence from interview and simulation study. Human Factors, 57, 1459–1471.CrossRefGoogle Scholar
  88. Zhang, W. & Rosenbaum, D. A. (2008). Planning for manual positioning: The end-state comfort effect for abduction-adduction of the hand. Experimental Brain Research, 184, 383–389.CrossRefGoogle Scholar

Copyright information

© The Psychonomic Society, Inc. 2019

Authors and Affiliations

  1. 1.Department of PsychologyUniversity of CaliforniaRiversideUSA

Personalised recommendations