Advertisement

Implied tactile motion: Localizing dynamic stimulations on the skin

  • Simon MerzEmail author
  • Hauke S. Meyerhoff
  • Charles Spence
  • Christian Frings
Article
  • 35 Downloads

Abstract

We report two experiments designed to investigate how the implied motion of tactile stimuli influences perceived location. Predicting the location of sensory input is especially important as far as the perception of, and interaction with, the external world is concerned. Using two different experimental approaches, an overall pattern of localization shifts analogous to what has been described previously in the visual and auditory modalities is reported. That is, participants perceive the last location of a dynamic stimulus further along its trajectory than is objectively the case. In Experiment 1, participants judged whether the last vibration in a sequence of three was located closer to the wrist or to the elbow. In Experiment 2, they indicated the last location on a ruler attached to their forearm. We further pinpoint the effects of implied motion on tactile localization by investigating the independent influences of motion direction and perceptual uncertainty. Taken together, these findings underline the importance of dynamic information in localizing tactile stimuli on the skin.

Keywords

Tactile localization Representational momentum Motion perception Direction perception 

Notes

Acknowledgements

The research reported here was supported by a grant from the Deutsche Forschungsgemeinschaft to Christian Frings and Charles Spence (FR2133/5-3). We would like to thank Stephanie Blasl for the drawings incorporated in Figs. 1, 2, and 3 and Moritz Breit and Johannes Stricker for their help with data collection.

References

  1. Alsmith, A. J., & Longo, M. R. (2014). Where exactly am I? Self-location judgements distribute between head and torso. Consciousness and Cognition, 24, 70-74.Google Scholar
  2. Arnold, G., Spence, C., & Auvray, M. (2017). A unity of the self or a multiplicity of locations? How the graphesthesia task sheds light on the role of spatial perspectives in bodily self-consciousness. Consciousness and Cognition, 56, 100-114.Google Scholar
  3. Bach, D. R., Neuhoff, J. G., Perrig, W., & Seifritz, E. (2009). Looming sounds as warning signals: The function of motion cues. International Journal of Psychophysiology, 74(1), 28-33.Google Scholar
  4. Bach, D. R., Schächinger, H., Neuhoff, J. G., Esposito, F., Salle, F. D., Lehmann, C., ... Seifritz, E. (2007). Rising sound intensity: An intrinsic warning cue activating the amygdala. Cerebral Cortex, 18(1), 145-150.Google Scholar
  5. Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1-48.Google Scholar
  6. Berry, M. J., Brivanlou, I. H., Jordan, T. A., & Meister, M. (1999). Anticipation of moving stimuli by the retina. Nature, 398(6725), 334-338.Google Scholar
  7. Blankenburg, F., Ruff, C. C., Deichmann, R., Rees, G., & Driver, J. (2006). The cutaneous rabbit illusion affects human primary sensory cortex somatotopically. PLoS Biology, 4(3):e69.Google Scholar
  8. Brugger, P., & Meier, R. (2015). A new illusion at your elbow. Perception, 44(2), 219-221.Google Scholar
  9. Chen, L. M., Friedman, R. M., & Roe, A. W. (2003). Optical imaging of a tactile illusion in Area 3b of the primary somatosensory cortex. Science, 302(5646), 881-885.Google Scholar
  10. Cholewiak, R. W. (1999). The perception of tactile distance: Influences of body site, space, and time, Perception, 28(7), 851-875.Google Scholar
  11. Cholewiak, R. W., & Collins, A. A. (2000). The generation of vibrotactile patterns on a linear array: Influences of body site, time, and presentation mode, Attention, Perception, & Psychophysics, 62(6), 1220-1235.Google Scholar
  12. Cholewiak, R. W., & Collins, A. A. (2003). Vibrotactile localization on the arm: Effects of place, space, and age, Attention, Perception, & Psychophysics, 65(7), 1058-1077.Google Scholar
  13. Cholewiak, R. W., & Craig, J. C. (1984). Vibrotactile pattern recognition and discrimination at several body sites. Attention, Perception, & Psychophysics, 35(6), 503-514.Google Scholar
  14. Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences, 36(3), 181-204.Google Scholar
  15. Cody, F. W., Garside, R. A., Lloyd, D., & Poliakoff, E. (2008). Tactile spatial acuity varies with site and axis in the human upper limb. Neuroscience Letters, 433(2), 103-108.Google Scholar
  16. Cooper, L. A., & Munger, M. P. (1993). Extrapolating and remembering positions along cognitive trajectories: Use and limitations of analogies to physical motion. In N. Eilan, R. A. McCarthy, & B. Brewer (Eds.), Spatial representation: Problems in philosophy and psychology (pp. 112-131). Cambridge: Blackwell Publishing.Google Scholar
  17. Craig, J. C., & Lyle, K. B. (2002). A correction and a comment on Craig and Lyle (2001). Attention, Perception, & Psychophysics, 64(3), 504-506.Google Scholar
  18. De Sá Teixeira, N. A. (2016). The visual representations of motion and of gravity are functionally independent: Evidence of a differential effect of smooth pursuit eye movements. Experimental Brain Research, 234(9), 2491-2504.Google Scholar
  19. De Sá Teixeira, N. A., Hecht, H., & Oliveira, A. M. (2013). The representational dynamics of remembered projectile locations. Journal of Experimental Psychology: Human Perception and Performance, 39(6), 1690-1699.Google Scholar
  20. Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175-191.Google Scholar
  21. Flach, R., & Haggard, P. (2006). The cutaneous rabbit revisited. Journal of Experimental Psychology: Human Perception and Performance, 32(3), 717-732.Google Scholar
  22. Freyd, J. J. (1987). Dynamic mental representations. Psychological Review, 94(4), 427-438.Google Scholar
  23. Freyd, J. J., & Finke, R. A. (1984). Representational momentum. Journal of Experimental Psychology: Learning, Memory, and Cognition, 10(1), 126-132.Google Scholar
  24. Freyd, J. J., & Johnson, J. Q. (1987). Probing the time course of representational momentum. Journal of Experimental Psychology: Learning, Memory, and Cognition, 13(2), 259-269.Google Scholar
  25. Fu, Y. X., Shen, Y., & Dan, Y. (2001). Motion-induced perceptual extrapolation of blurred visual targets. Journal of Neuroscience, 21(20):RC172:1-5.Google Scholar
  26. Gallace, A., Soto-Faraco, S., Dalton, P., Kreukniet, B., & Spence, C. (2008). Response requirements modulate tactile spatial congruency effects. Experimental Brain Research, 191(2), 171-186.Google Scholar
  27. Gallace, A., & Spence, C. (2014). In touch with the future: The sense of touch from cognitive neuroscience to virtual reality. Oxford: Oxford University Press.Google Scholar
  28. Gardner, E. P., & Spencer, W. A. (1972). Sensory funneling. I. Psychophysical observations of human subjects and responses of cutaneous mechanoreceptive afferents in the cat to patterned skin stimuli. Journal of Neurophysiology, 35(6), 925-953.Google Scholar
  29. Geldard, F. A. (1982). Saltation in somesthesis. Psychological Bulletin, 92(1), 136-175.Google Scholar
  30. Geldard, F. A., & Sherrick, C. E. (1972). The cutaneous" rabbit": A perceptual illusion. Science, 178(4057), 178-179.Google Scholar
  31. Getzmann, S., & Lewald, J. (2007). Localization of moving sound. Perception & Psychophysics, 69(6), 1022-1034.Google Scholar
  32. Getzmann, S., & Lewald, J. (2009). Constancy of target velocity as a critical factor in the emergence of auditory and visual representational momentum. Experimental Brain Research, 193(3), 437-443.Google Scholar
  33. Grassi, M., & Pavan, A. (2012). The subjective duration of audiovisual looming and receding stimuli. Attention, Perception, & Psychophysics, 74(6), 1321-1333.Google Scholar
  34. Gray, R. (2011). Looming auditory collision warnings for driving. Human Factors, 53(1), 63-74.Google Scholar
  35. Green, B. G. (1982). The perception of distance and location for dual tactile pressures. Attention, Perception, & Psychophysics, 31(4), 315-323.Google Scholar
  36. Guski, R. (1992). Acoustic tau: An easy analogue to visual tau? Ecological Psychology, 4(3), 189-197.Google Scholar
  37. Halpern, A. R., & Kelly, M. H. (1993). Memory biases in left versus right implied motion. Journal of Experimental Psychology: Learning, Memory, and Cognition, 19(2), 471-484.Google Scholar
  38. Harrar, V., & Harris, L. R. (2009). Eye position affects the perceived location of touch. Experimental Brain Research, 198(2-3), 403-410.Google Scholar
  39. Ho, C., Gray, R., & Spence, C. (2014). Reorienting driver attention with dynamic tactile cues. IEEE Transactions on Haptics, 7(1), 86-94.Google Scholar
  40. Ho, C., & Spence, C. (2007). Head orientation biases tactile localization. Brain Research, 1144, 136-141.Google Scholar
  41. Ho, C., Spence, C., & Gray, R. (2013). Looming auditory and vibrotactile collision warnings for safe driving. In Proceedings of the 7th International Driving Symposium on Human Factors in Driver Assessment, Training, and Vehicle Design (No. 83, pp. 551-557).Google Scholar
  42. Huang, Y., & Rao, R. P. (2011). Predictive coding. Wiley Interdisciplinary Reviews: Cognitive Science, 2(5), 580-593.Google Scholar
  43. Hubbard, T. L. (1990). Cognitive representation of linear motion: Possible direction and gravity effects in judged displacement. Memory & Cognition, 18(3), 299-309.Google Scholar
  44. Hubbard, T. L. (1995a). Cognitive representation of motion: Evidence for friction and gravity analogues. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21(1), 241-254.Google Scholar
  45. Hubbard, T. L. (1995b). Environmental invariants in the representation of motion: Implied dynamics and representational momentum, gravity, friction, and centripetal force. Psychonomic Bulletin & Review, 2(3), 322-338.Google Scholar
  46. Hubbard, T. L. (1996). Displacement in depth: Representational momentum and boundary extension. Psychological Research, 59(1), 33-47.Google Scholar
  47. Hubbard, T. L. (2005). Representational momentum and related displacements in spatial memory: A review of the findings. Psychonomic Bulletin & Review, 12(5), 822-851.Google Scholar
  48. Hubbard, T. L. (2010). Approaches to representational momentum: Theories and models. In R. Nijhawan & B. Khurana (Eds.), Space and time in perception and action (pp. 338-365). Cambridge: Cambridge University Press.Google Scholar
  49. Hubbard, T. L. (2014). Forms of momentum across space: Representational, operational, and attentional, Psychonomic Bulletin & Review, 21(6), 1371-1403.Google Scholar
  50. Hubbard, T. L. (2018). Influences on representational momentum. In T. L. Hubbard (Ed.), Spatial biases in perception and cognition (pp. 180-190). Cambridge, Cambridge University Press.Google Scholar
  51. Hubbard, T. L., & Bharucha, J. J. (1988). Judged displacement in apparent vertical and horizontal motion. Perception & Psychophysics, 44(3), 211-221.Google Scholar
  52. Hubbard, T. L., & Courtney, J. R. (2010). Cross-modal influences on representational momentum and representational gravity. Perception, 39(6), 851-862.Google Scholar
  53. Hubbard, T. L., & Motes, M. A. (2005). An effect of context on whether memory for initial position exhibits a Fröhlich effect or an onset repulsion effect. The Quarterly Journal of Experimental Psychology Section A, 58(6), 961-979.Google Scholar
  54. Hubbard, T. L., & Ruppel, S. E. (1999). Representational momentum and the landmark attraction effect. Canadian Journal of Experimental Psychology, 53(3), 242-256.Google Scholar
  55. Kanai, R., Sheth, B. R., & Shimojo, S. (2004). Stopping the motion and sleuthing the flash-lag effect: Spatial uncertainty is the key to perceptual mislocalization. Vision Research, 44(22), 2605-2619.Google Scholar
  56. Kerzel, D. (2000). Eye movements and visible persistence explain the mislocalization of the final position of a moving target. Vision Research, 40(27), 3703-3715.Google Scholar
  57. Kerzel, D. (2003). Mental extrapolation of target position is strongest with weak motion signals and motor responses. Vision Research, 43(25), 2623-2635.Google Scholar
  58. Kerzel, D., & Gegenfurtner, K. R. (2003). Neuronal processing delays are compensated in the sensorimotor branch of the visual system. Current Biology, 13(22), 1975-1978.Google Scholar
  59. Kline, S. R., & Reed, C. L. (2013). Contextual influences of dimension, speed, and direction of motion on subjective time perception. Attention, Perception, & Psychophysics, 75(1), 161-167.Google Scholar
  60. Limanowski, J., & Hecht, H. (2011). Where do we stand on locating the self? Psychology, 2(04), 312-317.Google Scholar
  61. Longo, M. R. (2017). Expansion of perceptual body maps near–but not across–the wrist. Frontiers in Human Neuroscience, 11:111.Google Scholar
  62. Macauda, G., Lenggenhager, B., Meier, R., Essick, G., & Brugger, P. (2018). Tactile motion lacks momentum. Psychological Research, 82, 889-895.Google Scholar
  63. Mancini, F., Longo, M. R., Iannetti, G. D., & Haggard, P. (2011). A supramodal representation of the body surface. Neuropsychologia, 49(5), 1194-1201.Google Scholar
  64. Margolis, A. N., & Longo, M. R. (2015). Visual detail about the body modulates tactile localisation biases. Experimental Brain Research, 233(2), 351-358.Google Scholar
  65. Medina, J., & Coslett, H. B. (2016). What can errors tell us about body representations?. Cognitive Neuropsychology, 33(1-2), 5-25.Google Scholar
  66. Meng, F., Gray, R., Ho, C., Ahtamad, M., & Spence, C. (2015a). Dynamic vibrotactile signals for forward collision avoidance warning systems. Human Factors, 57(2), 329-346.Google Scholar
  67. Meng, F., Ho, C., Gray, R., & Spence, C. (2015b). Dynamic vibrotactile warning signals for frontal collision avoidance: towards the torso versus towards the head. Ergonomics, 58(3), 411-425.Google Scholar
  68. Merz, S., Meyerhoff, H.S., Spence, C., & Frings, C. (2018). Data for ‘Implied tactile motion: localizing dynamic stimulations on the skin’ [Data files, single subject diagrams and R-scripts]. Available from doi: https://doi.org/10.23668/psycharchives.1848
  69. Müsseler, J., Stork, S., & Kerzel, D. (2002). Comparing mislocalizations with moving stimuli: The Fröhlich effect, the flash-lag, and representational momentum, Visual Cognition, 9(1-2), 120-138.Google Scholar
  70. Nagai, M., Kazai, K., & Yagi, A. (2002). Larger forward memory displacement in the direction of gravity. Visual Cognition, 9(1-2), 28-40.Google Scholar
  71. Neuhoff, J. G. (1998). Perceptual bias for rising tones. Nature, 395(6698), 123-124.Google Scholar
  72. Neuhoff, J. G. (2001). An adaptive bias in the perception of looming auditory motion. Ecological Psychology, 13(2), 87-110.Google Scholar
  73. Neuhoff, J. G. (2018). Adaptive biases in visual and auditory looming perception. In T. L. Hubbard (Ed.), Spatial biases in perception and cognition (pp. 180-190). Cambridge: Cambridge University Press.Google Scholar
  74. Neuhoff, J. G., Planisek, R., & Seifritz, E. (2009). Adaptive sex differences in auditory motion perception: Looming sounds are special. Journal of Experimental Psychology: Human Perception and Performance, 35(1), 225-234.Google Scholar
  75. Nguyen, E. H., Taylor, J. L., Brooks, J., & Seizova-Cajic, T. (2016). Velocity of motion across the skin influences perception of tactile location. Journal of Neurophysiology, 115(2), 674-684.Google Scholar
  76. Popper, N., & Fay, R. (1997). Evolution of the ear and hearing: Issues and questions. Brain, Behavior and Evolution, 50(4), 213-221.Google Scholar
  77. Pritchett, L. M., Carnevale, M. J., & Harris, L. R. (2012). Reference frames for coding touch location depend on the task. Experimental Brain Research, 222(4), 437-445.Google Scholar
  78. Rao, R. P., & Ballard, D. H. (1999). Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive-field effects. Nature Neuroscience, 2(1), 79-87.Google Scholar
  79. Rosenblum, L. D., Wuestefeld, A. P., & Saldaña, H. M. (1993). Auditory looming perception: Influences on anticipatory judgments. Perception, 22(12), 1467-1482.Google Scholar
  80. Schiff, W., Caviness, J. A., & Gibson, J. J. (1962). Persistent fear responses in rhesus monkeys to the optical stimulus of “looming”. Science, 136(3520), 982-983.Google Scholar
  81. Schiff, W., & Oldak, R. (1990). Accuracy of judging time to arrival: Effects of modality, trajectory, and gender, Journal of Experimental Psychology: Human Perception and Performance, 16(2), 303-316.Google Scholar
  82. Schmiedchen, K., Freigang, C., Rübsamen, R., & Richter, N. (2013). A comparison of visual and auditory representational momentum in spatial tasks. Attention, Perception, & Psychophysics, 75(7), 1507-1519.Google Scholar
  83. Seizova-Cajic, T., & Taylor, J. L. (2014). Somatosensory space abridged: Rapid change in tactile localization using a motion stimulus. PLoS One, 9(3), e90892.Google Scholar
  84. Spence, C., Lee, J., & van der Stoep, N. (2017). Responding to sounds from unseen locations: Crossmodal attentional orienting in response to sounds presented from the rear. European Journal of Neuroscience, 1-17. doi: https://doi.org/10.1111/ejn.13733
  85. Starmans, C., & Bloom, P. (2012). Windows to the soul: Children and adults see the eyes as the location of the self. Cognition, 123(2), 313-318.Google Scholar
  86. Steenbergen, P., Buitenweg, J. R., Trojan, J., & Veltink, P. H. (2014). Tactile localization depends on stimulus intensity. Experimental Brain Research, 232(2), 597-607.Google Scholar
  87. Stevens, J. C., & Choo, K. K. (1996). Spatial acuity of the body surface over the life span. Somatosensory & Motor Research, 13(2), 153-166.Google Scholar
  88. Tabachnick, B. G., & Fidell, L. S. (2007). Using multivariate statistics (5th). New York: Allyn & Bacon.Google Scholar
  89. Team, R. C. (2018). R: A language and environment for statistical computing. R Foundation of Statistical Computing, Vienna. Available from https://www.R-project.org/.Google Scholar
  90. Trojan, J., Kleinböhl, D., Stolle, A. M., Andersen, O. K., Hölzl, R., & Arendt-Nielsen, L. (2006). Psychophysical ‘perceptual maps’ of heat and pain sensations by direct localization of CO2 laser stimuli on the skin. Brain Research, 1120(1), 106-113.Google Scholar
  91. Trojan, J., Stolle, A. M., Mršić Carl, A., Kleinböhl, D., Tan, H. Z., & Hölzl, R. (2010). Spatiotemporal integration in somatosensory perception: Effects of sensory saltation on pointing at perceived positions on the body surface. Frontiers in Psychology, 1:206.Google Scholar
  92. Weinstein, S. (1968). Intensive and extensive aspects of tactile sensitivity as a function of body part, sex, and laterality. In D. R. Kenshal (Ed.), The skin senses (pp. 195-222). Springfield: Thomas.Google Scholar
  93. Whitsel, B. L., Franzen, O., Dreyer, D. A., Hollins, M., Young, M., Essick, G. K., & Wong, C. (1986). Dependence of subjective traverse length on velocity of moving tactile stimuli. Somatosensory Research, 3(3), 185-196.Google Scholar

Copyright information

© The Psychonomic Society, Inc. 2019

Authors and Affiliations

  • Simon Merz
    • 1
    Email author
  • Hauke S. Meyerhoff
    • 2
  • Charles Spence
    • 3
  • Christian Frings
    • 1
  1. 1.Department of Psychology, Cognitive PsychologyUniversity of TrierTrierGermany
  2. 2.Leibniz-Institut für WissensmedienTübingenGermany
  3. 3.Department of Experimental PsychologyUniversity of OxfordOxfordUK

Personalised recommendations