Advertisement

Attention, Perception, & Psychophysics

, Volume 80, Issue 3, pp 723–737 | Cite as

Calibration of peripheral perception of shape with and without saccadic eye movements

  • Céline Paeye
  • Thérèse Collins
  • Patrick Cavanagh
  • Arvid Herwig
Article
  • 363 Downloads

Abstract

The cortical representations of a visual object differ radically across saccades. Several studies claim that the visual system adapts the peripheral percept to better match the subsequent foveal view. Recently, Herwig, Weiß, and Schneider (2015, Annals of the New York Academy of Sciences, 1339(1), 97–105) found that the perception of shape demonstrates a saccade-dependent learning effect. Here, we ask whether this learning actually requires saccades. We replicated Herwig et al.’s (2015) study and introduced a fixation condition. In a learning phase, participants were exposed to objects whose shape systematically changed during a saccade, or during a displacement from peripheral to foveal vision (without a saccade). In a subsequent test, objects were perceived as less (more) curved if they previously changed from more circular (triangular) in the periphery to more triangular (circular) in the fovea. Importantly, this pattern was seen both with and without saccades. We then tested whether a variable delay between the presentations of the peripheral and foveal objects would affect their association—hypothetically weakening it at longer delays. Again, we found that shape judgments depended on the changes experienced during the learning phase and that they were similar in both the saccade and fixation conditions. Surprisingly, they were not affected by the delay between the peripheral and foveal presentations over the range we tested. These results suggest that a general associative process, independent of saccade execution, contributes to the perception of shape across viewpoints.

Keywords

Visual perception Perception and Action Eye Movements 

Notes

Aknowledgements

The research leading to these results received funding from the European Research Council under the European Union’s Seventh Framework Program (FP7/2007-2013)/ERC Grant Agreement No. AG324070 to PC and by a grant of the German Research Council (Deutsche Forschungsgemeinschaft; DFG) Grant He6388/1-2 to A.H. The authors declare no competing financial interests.

Supplementary material

13414_2017_1478_MOESM1_ESM.pdf (552 kb)
ESM 1 (PDF 552 kb)

References

  1. Anderson, B. A. (2013). A value-driven mechanism of attentional selection. Journal of Vision, 13(3), 1–16.CrossRefGoogle Scholar
  2. Awh, E., Belopolsky, A. V., & Theeuwes, J. (2012). Top-down versus bottom-up attentional control: A failed theoretical dichotomy. Trends in Cognitive Sciences, 16(8), 437–43.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bompas, A., & O’Regan, J. K. (2006). More evidence for sensorimotor adaptation in color perception. Journal of Vision, 6(2), 5–5.CrossRefGoogle Scholar
  4. Bosco, A., Lappe, M., & Fattori, P. (2015). Adaptation of saccades and perceived size after trans-saccadic changes of object size. The Journal of Neuroscience, 35(43), 14448–14456.CrossRefPubMedGoogle Scholar
  5. Brainard, D. (1997). The Psychophysics Toolbox. Spatial Vision, 10, 433–436.CrossRefPubMedGoogle Scholar
  6. Collins, T. (2012). Probability of seeing increases saccadic readiness. PLOS ONE, 7(11), e49454.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Cox, D. D., Meier, P., Oertelt, N., & DiCarlo, J. J. (2005). « Breaking » position-invariant object recognition. Nature Neuroscience, 8(9), 1145–1147.CrossRefPubMedGoogle Scholar
  8. de Wit, S., & Dickinson, A. (2015). Ideomotor mechanisms of goal-directed behavior. In T. S. Braver (Ed.), Motivation and cognitive control (Frontiers of cognitive psychology) (Chapter 7). New York: Routledge.Google Scholar
  9. Delamater, A. R., & Holland, P. C. (2008). The influence of CS-US interval on several different indices of learning in appetitive conditioning. Journal of Experimental Psychology: Animal Behavior Processes, 34(2), 202–222.PubMedPubMedCentralGoogle Scholar
  10. Demeyer, M., De Graef, P., Wagemans, J., & Verfaillie, K. (2010). Parametric integration of visual form across saccades. Vision Research, 50(13), 1225–1234.CrossRefPubMedGoogle Scholar
  11. Deubel, H., Koch, C., & Bridgeman, B. (2010). Landmarks facilitate visual space constancy across saccades and during fixation. Vision Research, 50(2), 249–259.CrossRefPubMedGoogle Scholar
  12. Deubel, H., & Schneider, W. X. (1996). Saccade target selection and object recognition: Evidence for a common attentional mechanismVision Research, 36(12), 1827–1837.CrossRefPubMedGoogle Scholar
  13. Deubel, H., Schneider, W. X., & Bridgeman, B. (1996). Postsaccadic target blanking prevents saccadic suppression of image displacement. Vision Research, 36(7), 985–996.CrossRefPubMedGoogle Scholar
  14. Deubel, H., Schneider, W. X., & Bridgeman, B. (2002). Transsaccadic memory of position and form. Progress in Brain Research, 140, 165–180.CrossRefPubMedGoogle Scholar
  15. Dinsmoor, J. A. (1995). Stimulus control: Part I. The Behavior Analyst, 18(1), 51–68.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Donahoe, J. W., Burgos, J. E., & Palmer, D. C. (1993). A selectionist approach to reinforcement. Journal of the Experimental Analysis of Behavior, 60(1), 17–40.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Dorris, M. C., Pare, M., & Munoz, D. P. (2000). Immediate neural plasticity shapes motor performance. Journal of Neuroscience, 20(1), 1–5.Google Scholar
  18. Duhamel, J. R., Colby, C. L., & Goldberg, M. E. (1992). The updating of the representation of visual space in parietal cortex by intended eye movements. Science, 255(5040), 90–92.CrossRefPubMedGoogle Scholar
  19. Elsner, B., & Hommel, B. (2001). Effect anticipation and action control. Journal of Experimental Psychology: Human Perception and Performance, 27(1), 229–240.PubMedGoogle Scholar
  20. Fabius, J. H., Fracasso, A., & Van der Stigchel, S. (2016). Spatiotopic updating facilitates perception immediately after saccades. Scientific Reports, 6, 1–11.CrossRefGoogle Scholar
  21. Ganmor, E., Landy, M., & Simoncelli, E. (2015). Near-optimal integration of orientation information across saccadic eye movements. Journal of Vision, 15(12), 1306–1306.CrossRefGoogle Scholar
  22. Grice, G. R. (1948). The relation of secondary reinforcement to delayed reward in visual discrimination learning. Journal of Experimental Psychology, 38(1), 1–16.CrossRefPubMedGoogle Scholar
  23. Guttman, N., & Kalish, H. I. (1956). Discriminability and stimulus generalization. Journal of Experimental Psychology, 51(1), 79–88.CrossRefPubMedGoogle Scholar
  24. Haijiang, Q., Saunders, J. A., Stone, R. W., & Backus, B. T. (2006). Demonstration of cue recruitment: Change in visual appearance by means of Pavlovian conditioning. Proceedings of the National Academy of Sciences of the United States of America, 103(2), 483–488.CrossRefPubMedGoogle Scholar
  25. Hayhoe, M., Lachter, J., & Feldman, J. (1991). Integration of form across saccadic eye movements. Perception, 20(3), 393–402.CrossRefPubMedGoogle Scholar
  26. Henderson, J. M., Pollatsek, A., & Rayner, K. (1989). Covert visual attention and extrafoveal information use during object identification. Attention, Perception, & Psychophysics, 45(3), 196–208.CrossRefGoogle Scholar
  27. Herwig, A. (2015a). Linking perception and action by structure or process? Toward an integrative perspective. Neuroscience & Biobehavioral Reviews, 52, 105–116.CrossRefGoogle Scholar
  28. Herwig, A. (2015b). Transsaccadic integration and perceptual continuity. Journal of Vision, 15(16), 1–7.CrossRefGoogle Scholar
  29. Herwig, A., Prinz, W., & Waszak, F. (2007). Two modes of sensorimotor integration in intention-based and stimulus-based actions. The Quarterly Journal of Experimental Psychology, 60(11), 1540–1554.CrossRefPubMedGoogle Scholar
  30. Herwig, A., & Schneider, W. X. (2014). Predicting object features across saccades: Evidence from object recognition and visual search. Journal of Experimental Psychology: General, 143(5), 1903–1923.CrossRefGoogle Scholar
  31. Herwig, A., Weiß, K., & Schneider, W. X. (2015). When circles become triangular: How transsaccadic predictions shape the perception of shape. Annals of the New York Academy of Sciences, 1339(1), 97–105.CrossRefPubMedGoogle Scholar
  32. Hickey, C., & van Zoest, W. (2012). Reward creates oculomotor salience. Current Biology, 22(7), 219–220.CrossRefGoogle Scholar
  33. Higgins, J. S., & Wang, R. F. (2010). A landmark effect in the perceived displacement of objects. Vision Research, 50(2), 242–248.CrossRefPubMedGoogle Scholar
  34. Hoffmann, J., Berner, M., Butz, M. V., Herbort, O., Kiesel, A., Kunde, W. & Lenhard, A. (2007). Explorations of anticipatory behavioral control (ABC): A report from the Cognitive Psychology Unit of the University of Würzburg. Cognitive Processing, 8, 133–142.CrossRefPubMedGoogle Scholar
  35. Hollingworth, A., & Franconeri, S. L. (2009). Object correspondence across brief occlusion is established on the basis of both spatiotemporal and surface feature cues. Cognition, 113(2), 150–166.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Hollingworth, A., Richard, A. M., & Luck, S. J. (2008). Understanding the function of visual short-term memory: Transsaccadic memory, object correspondence, and gaze correction. Journal of Experimental Psychology: General, 137(1), 163–181.CrossRefGoogle Scholar
  37. Hommel, B. (2009). Action control according to TEC (theory of event coding). Psychological Research PRPF, 73(4), 512–526.CrossRefGoogle Scholar
  38. Irwin, D. E. (1991). Information integration across saccadic eye movements. Cognitive Psychology, 23(3), 420–456.CrossRefPubMedGoogle Scholar
  39. Irwin, D. E., & Gordon, R. D. (1998). Eye movements, attention and trans-saccadic memory. Visual Cognition, 5(1/2), 127–155.Google Scholar
  40. Irwin, D. E., Zacks, J. L., & Brown, J. S. (1990). Visual memory and the perception of a stable visual environment. Perception & Psychophysics, 47(1), 35–46.CrossRefGoogle Scholar
  41. Jarvik, M. E. (1956). Simple color discrimination in chimpanzees: Effect of varying contiguity between cue and incentive. Journal of Comparative and Physiological Psychology, 49(5), 492–495.CrossRefPubMedGoogle Scholar
  42. JASP Team (2017). JASP (Version 0.8.5) [Computer software].Google Scholar
  43. Kahneman, D., Treisman, A., & Gibbs, B. J. (1992). The reviewing of object files: Object-specific integration of information. Cognitive Psychology, 24(2), 175–219.CrossRefPubMedGoogle Scholar
  44. Kehoe, E. J., Cool, V., & Gormezano, I. (1991). Trace conditioning of the rabbit’s nictitating membrane response as a function of CS-US interstimulus interval and trials per session. Learning and Motivation, 22(3), 269–290.CrossRefGoogle Scholar
  45. Kiesel, A., & Hoffmann, J. (2004). Variable action effects: Response control by context-specific effect anticipations. Psychological Research, 68, 155–162.CrossRefPubMedGoogle Scholar
  46. Kim, D., Seitz, A. R., & Watanabe, T. (2015). Visual perceptual learning by operant conditioning training follows rules of contingency. Visual Cognition, 23(1/2), 147–160.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Kleiner, M., Brainard, D., & Pelli, D. (2007). What’s new in Psychtoolbox-3. Perception Abstract Supplement, 36(14), 1.Google Scholar
  48. Kruschke, J. K. (2003). Attention in learning. Current Directions in Psychological Science, 12(5), 171–175.CrossRefGoogle Scholar
  49. Madelain, L., Paeye, C., & Wallman, J. (2011). Modification of saccadic gain by reinforcement. Journal of Neurophysiology, 106(1), 219–232.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Marchand, A. R., & Kamper, E. (2000). Time course of cardiac conditioned responses in restrained rats as a function of the trace CS–US interval. Journal of Experimental Psychology: Animal Behavior Processes, 26(4), 385–398.PubMedGoogle Scholar
  51. Marx, S., & Einhäuser, W. (2015). Reward modulates perception in binocular rivalry. Journal of Vision, 15(1), 1–11.CrossRefPubMedGoogle Scholar
  52. McConkie, G. W., & Currie, C. B. (1996). Visual stability across saccades while viewing complex pictures. Journal of Experimental Psychology: Human Perception and Performance, 22(3), 563–581.PubMedGoogle Scholar
  53. Montagnini, A., & Chelazzi, L. (2005). The urgency to look: Prompt saccades to the benefit of perception. Vision Research, 45(27), 3391–3401.CrossRefPubMedGoogle Scholar
  54. Moore, C. M., Mordkoff, J. T., & Enns, J. T. (2007). The path of least persistence: Object status mediates visual updating. Vision Research, 47(12), 1624–1630.CrossRefPubMedGoogle Scholar
  55. Noles, N. S., Scholl, B. J., & Mitroff, S. R. (2005). The persistence of object file representations. Perception & Psychophysics, 67(2), 324–334.CrossRefGoogle Scholar
  56. Oostwoud, W. L., Marshall, L., & Bays, P. (2015). Visual updating across saccades by working memory integration. Journal of Vision, 15(12), 785–785.CrossRefGoogle Scholar
  57. O’Regan, J. K., & Noë, A. (2001). A sensorimotor account of vision and visual consciousness. Behavioral and Brain Sciences, 24(05), 939–973.Google Scholar
  58. Paeye, C., Collins, T., & Cavanagh, P. (2017). Transsaccadic perceptual fusion. Journal of Vision, 17(1), 1–14.CrossRefGoogle Scholar
  59. Paeye, C., & Madelain, L. (2011). Reinforcing saccadic amplitude variability. Journal of the Experimental Analysis of Behavior, 95(2), 149–162.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Paeye, C., & Madelain, L. (2014). Reinforcing saccadic amplitude variability in a visual search task. Journal of Vision, 14(13), 1–20.CrossRefGoogle Scholar
  61. Paeye, C., Schütz, A., & Gegenfurtner, K. (2016). Visual reinforcement shapes eye movements in visual search. Journal of Vision, 16(10), 1–15.CrossRefGoogle Scholar
  62. Pavlov, I. (1927). Conditioned reflexes. London: Oxford University Press.Google Scholar
  63. Pelli, D. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10, 437–442.CrossRefPubMedGoogle Scholar
  64. Poth, C. H., Herwig, A., & Schneider, W. X. (2015). Breaking object correspondence across saccadic eye movements deteriorates object recognition. Frontiers in Systems Neuroscience, 9(176), 1–10.Google Scholar
  65. Prime, S. L., Niemeier, M., & Crawford, J. D. (2006). Transsaccadic integration of visual features in a line intersection task. Experimental Brain Research, 169(4), 532–548.CrossRefPubMedGoogle Scholar
  66. Quinn, W. G., Harris, W. A., & Benzer, S. (1974). Conditioned behavior in Drosophila melanogaster. Proceedings of the National Academy of Sciences, 71(3), 708–712.CrossRefGoogle Scholar
  67. Rescorla, R., & Wagner, A. (1972). A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. In A. H. Black & W. F. Prokasy (Ed.), Classical conditioning II: Current research and theory (pp. 64–99). New York: Appleton-Century-Crofts.Google Scholar
  68. Richard, A. M., Luck, S. J., & Hollingworth, A. (2008). Establishing object correspondence across eye movements: Flexible use of spatiotemporal and surface feature information. Cognition, 109(1), 66–88.CrossRefPubMedPubMedCentralGoogle Scholar
  69. Rolfs, M., Jonikaitis, D., Deubel, H., & Cavanagh, P. (2011). Predictive remapping of attention across eye movements. Nature Neuroscience, 14(2), 252–256.CrossRefPubMedGoogle Scholar
  70. Ross, J., Morrone, M. C., Goldberg, M. E., & Burr, D. C. (2001). Changes in visual perception at the time of saccades. Trends in Neurosciences, 24(2), 113–121.CrossRefPubMedGoogle Scholar
  71. Schneider, W. X. (2013). Selective visual processing across competition episodes: A theory of task-driven visual attention and working memory. Philosophical Transactions of the Royal Society B, 368(1628), 1–13.Google Scholar
  72. Schultz, W. (2006). Behavioral theories and the neurophysiology of reward. Annual Review of Psychology, 57, 87–115.CrossRefPubMedGoogle Scholar
  73. Schütz, A. C., Kerzel, D., & Souto, D. (2014). Saccadic adaptation induced by a perceptual task. Journal of Vision, 14(5), 1–19.CrossRefGoogle Scholar
  74. Seitz, A. R., Kim, D., & Watanabe, T. (2009). Rewards evoke learning of unconsciously processed visual stimuli in adult humans. Neuron, 61(5), 700–707.CrossRefPubMedPubMedCentralGoogle Scholar
  75. Seitz, A. R., Nanez, J. E., Holloway, S. R., Koyama, S., & Watanabe, T. (2005). Seeing what is not there shows the costs of perceptual learning. Proceedings of the National Academy of Sciences of the United States of America, 102(25), 9080–9085.CrossRefPubMedPubMedCentralGoogle Scholar
  76. Seitz, A. R., & Watanabe, T. (2003). Psychophysics: Is subliminal learning really passive? Nature, 422(6927), 36.Google Scholar
  77. Seitz, A. R., & Watanabe, T. (2005). A unified model for perceptual learning. Trends in Cognitive Sciences, 9(7), 329–334.CrossRefPubMedGoogle Scholar
  78. Shafir, S. (1996). Color discrimination conditioning of a wasp, Polybia occidentalis (Hymenoptera: Vespidae). Biotropica, 28(2), 243–251.Google Scholar
  79. Shin, Y. K., Proctor, R. W., & Capaldi, E. J. (2010). A review of contemporary ideomotor theory. Psychological Bulletin, 136(6), 943–974.CrossRefPubMedGoogle Scholar
  80. Sidman, M. (2008). Reflections on stimulus control. The Behavior Analyst 31 (2), 127–135.Google Scholar
  81. Tas, A. C., Moore, C. M., & Hollingworth, A. (2012). An object-mediated updating account of insensitivity to transsaccadic change. Journal of Vision, 12(11), 1–18.CrossRefGoogle Scholar
  82. Valsecchi, M., & Gegenfurtner, K. R. (2016). Dynamic re-calibration of perceived size in fovea and periphery through predictable size changes. Current Biology, 26(1), 59–63.CrossRefPubMedGoogle Scholar
  83. Weiß, K., & Herwig, A. (2015). Where triangles become circular: The impact of transsaccadic predictions on shape perception depends on retinal eccentricity. Journal of Eye Movement Research, 8(4), 191.Google Scholar
  84. Weiß, K., Schneider, W. X., & Herwig, A. (2014). Associating peripheral and foveal visual input across saccades: A default mode of the human visual system? Journal of Vision, 14(11), 1–15.CrossRefGoogle Scholar
  85. Wolf, C., & Schütz, A. C. (2015). Trans-saccadic integration of peripheral and foveal feature information is close to optimal. Journal of Vision, 15(16), 1–18.CrossRefPubMedGoogle Scholar
  86. Wolfe, B. A., & Whitney, D. (2015). Saccadic remapping of object-selective information. Attention, Perception, & Psychophysics, 77(7), 2260–2269.CrossRefGoogle Scholar
  87. Wurtz, R. H. (2008). Neuronal mechanisms of visual stability. Vision Research, 48(20), 2070–2089.CrossRefPubMedPubMedCentralGoogle Scholar
  88. Xu-Wilson, M., Zee, D. S., & Shadmehr, R. (2009). The intrinsic value of visual information affects saccade velocities. Experimental Brain Research, 196(4), 475–481.CrossRefPubMedPubMedCentralGoogle Scholar
  89. Zimmermann, E., Born, S., Fink, G. R., & Cavanagh, P. (2014). Masking produces compression of space and time in the absence of eye movements. Journal of Neurophysiology, 112(12), 3066–3076.CrossRefPubMedPubMedCentralGoogle Scholar
  90. Zimmermann, E., Fink, G., & Cavanagh, P. (2013). Perifoveal spatial compression. Journal of Vision, 13(5), 1–21.CrossRefGoogle Scholar

Copyright information

© The Psychonomic Society, Inc. 2018

Authors and Affiliations

  • Céline Paeye
    • 1
    • 2
  • Thérèse Collins
    • 1
  • Patrick Cavanagh
    • 1
    • 2
    • 3
  • Arvid Herwig
    • 4
    • 5
  1. 1.Laboratoire Psychologie de la Perception, UMR 8242Paris Descartes UniversityParisFrance
  2. 2.Laboratoire Vision Action Cognition, EA 7326, Institut de PsychologieParis Descartes UniversityBoulogne-Billancourt CedexFrance
  3. 3.Department of Psychological and Brain SciencesDartmouth CollegeHanoverUSA
  4. 4.Department of PsychologyBielefeld UniversityBielefeldGermany
  5. 5.Cognitive Interaction Technology–Excellence ClusterBielefeldUniversityBielefeldGermany

Personalised recommendations