Advertisement

Attention, Perception, & Psychophysics

, Volume 80, Issue 3, pp 738–751 | Cite as

Symmetry and its role in the crossmodal correspondence between shape and taste

  • Nora Turoman
  • Carlos Velasco
  • Yi-Chuan Chen
  • Pi-Chun Huang
  • Charles Spence
Article

Abstract

Despite the rapid growth of research on the crossmodal correspondence between visually presented shapes and basic tastes (e.g., sweet, sour, bitter, and salty), most studies that have been published to date have focused on shape contour (roundness/angularity). Meanwhile, other important features, such as symmetry, as well as the underlying mechanisms of the shape–taste correspondence, have rarely been studied. Over two experiments, we systematically manipulated the symmetry and contours of shapes and measured the influences of these variables on shape–taste correspondences. Furthermore, we investigated a potential underlying mechanism, based on the common affective appraisal of stimuli in different sensory modalities. We replicated the results of previous studies showing that round shapes are associated with sweet taste, whereas angular shapes are associated with sour and bitter tastes. In addition, we demonstrated a novel effect that the symmetry group of a shape influences how it is associated with taste. A significant relationship was observed between the taste and appraisal scores of the shapes, suggesting that the affective factors of pleasantness and threat underlie the shape–taste correspondence. These results were consistent across cultures, when we compared participants from Taiwanese and Western (UK, US, Canada) cultures. Our findings highlight that perceived pleasantness and threat are culturally common factors involved in at least some crossmodal correspondences.

Keywords

Crossmodal correspondences Shape Symmetry Taste Pleasantness Threat 

References

  1. Adams, F. M., & Osgood, C. E. (1973). A cross-cultural study of the affective meanings of color. Journal of Cross-Cultural Psychology, 4, 135–156.CrossRefGoogle Scholar
  2. Apthorp, D., & Bell, J. (2015). Symmetry is less than meets the eye. Current Biology, 25, R267–R268.PubMedCrossRefGoogle Scholar
  3. Armstrong, M. A. (1988). Groups and symmetry. New York, NY: Springer.CrossRefGoogle Scholar
  4. Aronoff, J. (2006). How we recognize angry and happy emotion in people, places, and things. Cross-Cultural Research, 40, 83–105.CrossRefGoogle Scholar
  5. Aronoff, J., Barclay, A. M., & Stevenson, L. A. (1988). The recognition of threatening facial stimuli. Journal of Personality and Social Psychology, 54, 647–655.PubMedCrossRefGoogle Scholar
  6. Aronoff, J., Woike, B. A., & Hyman, L. M. (1992). Which are the stimuli in facial displays of anger and happiness? Configurational bases of emotion recognition. Journal of Personality and Social Psychology, 62, 1050–1066.CrossRefGoogle Scholar
  7. Bar, M., & Neta, M. (2006). Humans prefer curved visual objects. Psychological Science, 17, 645–648. doi: https://doi.org/10.1111/j.1467-9280.2006.01759.x PubMedCrossRefGoogle Scholar
  8. Barbiere, J. M., Vidal, A., & Zellner, D. A. (2007). The color of music: Correspondence through emotion. Empirical Studies of the Arts, 25, 193–208.CrossRefGoogle Scholar
  9. Barrett, L. F. (2006). Valence is a basic building block of emotional life. Journal of Research in Personality, 40, 35–55.CrossRefGoogle Scholar
  10. Barrett, L. F., & Bar, M. (2009). See it with feeling: Affective predictions during object perception. Philosophical Transactions of the Royal Society B, 364, 1325–1334. doi: https://doi.org/10.1098/rstb.2008.0312 CrossRefGoogle Scholar
  11. Barrett, L. F., & Bliss-Moreau, E. (2009). Affect as a psychological primitive. In M. P. Zanna (Ed.), Advances in experimental social psychology (Vol. 41, pp. 167–218). London, UK: Academic Press. doi: https://doi.org/10.1016/S0065-2601(08)00404-8 Google Scholar
  12. Barrett, L. F., & Russell, J. A. (1999). The structure of current affect controversies and emerging consensus. Current Directions in Psychological Science, 8, 10–14.CrossRefGoogle Scholar
  13. Behrens, M., & Meyerhof, W. (2006). Bitter taste receptors and human bitter taste perception. Cellular and Molecular Life Sciences, 63, 1501–1509.PubMedCrossRefGoogle Scholar
  14. Bertamini, M., Friedenberg, J., & Argyle, L. (2002). No within-object advantage for detection of rotation. Acta Psychologica, 111, 59–81.PubMedCrossRefGoogle Scholar
  15. Birch, L. L. (1999). Development of food preferences. Annual Review of Nutrition, 19, 41–62.PubMedCrossRefGoogle Scholar
  16. Bornstein, M. H., Ferdinandsen, K., & Gross, C. G. (1981). Perception of symmetry in infancy. Developmental Psychology, 17, 82–86.CrossRefGoogle Scholar
  17. Bremner, A. J., Caparos, S., Davidoff, J., de Fockert, J., Linnell, K. J., & Spence, C. (2013). “Bouba” and “Kiki” in Namibia? A remote culture make similar shape–sound matches, but different shape–taste matches to Westerners. Cognition, 126, 165–172. doi: https://doi.org/10.1016/j.cognition.2012.09.007 PubMedCrossRefGoogle Scholar
  18. Breslin, P. A. (2013). An evolutionary perspective on food and human taste. Current Biology, 23, R409–R418.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Brining, S. K., Belecky, T. L., & Smith, D. V. (1991). Taste reactivity in the hamster. Physiology and Behavior, 49, 1265–1272.PubMedCrossRefGoogle Scholar
  20. Chaudhari, N., & Roper, S. D. (2010). Review series: The cell biology of taste. Journal of Cell Biology, 190, 285–296.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Chen, Y.-C., Huang, P.-C., Woods, A., & Spence, C. (2016). When “Bouba” equals “Kiki”: Cultural commonalities and cultural differences in sound–shape correspondences. Scientific Reports, 6, 26681. doi: https://doi.org/10.1038/srep26681 PubMedPubMedCentralCrossRefGoogle Scholar
  22. Collier, G. L. (1996). Affective synesthesia: Extracting emotion space from simple perceptual stimuli. Motivation and Emotion, 20, 1–32. doi: https://doi.org/10.1007/BF02251005 CrossRefGoogle Scholar
  23. Corballis, M. C., & Roldan, C. E. (1974). On the perception of symmetrical and repeated patterns. Perception & Psychophysics, 16, 136–142.CrossRefGoogle Scholar
  24. Cowles, J. T. (1935). An experimental study of the pairing of certain auditory and visual stimuli. Journal of Experimental Psychology, 18, 461–469.CrossRefGoogle Scholar
  25. Crisinel, A.-S., & Spence, C. (2010). As bitter as a trombone: Synesthetic correspondences in nonsynesthetes between tastes/flavors and musical notes. Attention, Perception, & Psychophysics, 72, 1994–2002. doi: https://doi.org/10.3758/APP.72.7.1994 CrossRefGoogle Scholar
  26. Crisinel, A.-S., & Spence, C. (2012). A fruity note: crossmodal associations between odors and musical notes. Chemical Senses, 37, 151–158. doi: https://doi.org/10.1093/chemse/bjr085 PubMedCrossRefGoogle Scholar
  27. Deroy, O., Crisinel, A.-S., & Spence, C. (2013). Crossmodal correspondences between odors and contingent features: Odors, musical notes, and geometrical shapes. Psychonomic Bulletin & Review, 20, 878–896. doi: https://doi.org/10.3758/s13423-013-0397-0 CrossRefGoogle Scholar
  28. Deroy, O., & Spence, C. (2016). Crossmodal correspondences: Four challenges. Multisensory Research, 29, 29–48.PubMedCrossRefGoogle Scholar
  29. Deroy, O., & Valentin, D. (2011). Tasting liquid shapes: Investigating the sensory basis of cross-modal correspondences. Chemosensory Perception, 4, 80–90.CrossRefGoogle Scholar
  30. Doherty, M. J., Tsuji, H., & Phillips, W. A. (2008). The context sensitivity of visual size perception varies across cultures. Perception, 37, 1426–1433. doi: https://doi.org/10.1068/p5946 PubMedCrossRefGoogle Scholar
  31. Ellsworth, P. C., & Scherer, K. R. (2003). Appraisal processes in emotion. In J. D. Richard, K. R. Scherer, & H. Hill Goldsmith (Eds.), Handbook of affective sciences, series in affective sciences (pp. 572–595). Oxford, UK: Oxford University Press.Google Scholar
  32. Enquist, M., & Arak, A. (1994). Symmetry, beauty and evolution. Nature, 372, 169–172.PubMedCrossRefGoogle Scholar
  33. Evans, C. S., Wenderoth, P., & Cheng, K. (2000). Detection of bilateral symmetry in complex biological images. Perception, 29, 31–42.PubMedCrossRefGoogle Scholar
  34. Fisher, C. B., Ferdinandsen, K., & Bornstein, M. H. (1981). The role of symmetry in infant form discrimination. Child Development, 52, 457–462.PubMedCrossRefGoogle Scholar
  35. Frank, M. E., & Hettinger, T. P. (2005). What the tongue tells the brain about taste. Chemical Senses, 30(Suppl. 1), 68–69. doi: https://doi.org/10.1093/chemse/bjh117 CrossRefGoogle Scholar
  36. Gangestad, S. W., Thornhill, R., & Yeo, R. (1994). Facial attractiveness, developmental stability, and fluctuating asymmetry. Ethology and Sociobiology, 15, 73–85.CrossRefGoogle Scholar
  37. Glendinning, J. I. (1994). Is the bitter rejection response always adaptive? Physiology and Behavior, 56, 1217–1227.PubMedCrossRefGoogle Scholar
  38. Glendinning, J. I., Tarre, M., & Asaoka, K. (1999). Contribution of different bitter-sensitive taste cells to feeding inhibition in a caterpillar (Manduca sexta). Behavioral Neuroscience, 113, 840–854.PubMedCrossRefGoogle Scholar
  39. Gómez-Puerto, G., Munar, E., & Nadal, M. (2016). Preference for curvature: A historical and conceptual framework. Frontiers in Human Neuroscience, 9, 712:1–8. doi: https://doi.org/10.3389/fnhum.2015.00712 Google Scholar
  40. Gómez-Puerto, G., Munar, E., Acedo, C., & Gomila, A. (2013). Is the human initial preference for rounded shapes universal? Preliminary results of an ongoing cross-cultural research. Perception, 42(ECVP Abs. Suppl), 102.Google Scholar
  41. Gutchess, A. H., Welsh, R. C., Boduroglu, A., & Park, D. C. (2006). Cultural differences in neural function associated with object processing. Cognitive, Affective, & Behavioral Neuroscience, 6, 102–109. doi: https://doi.org/10.3758/CABN.6.2.102 CrossRefGoogle Scholar
  42. Hanson-Vaux, G., Crisinel, A. S., & Spence, C. (2013). Smelling shapes: Crossmodal correspondences between odors and shapes. Chemical Senses, 38, 161–166.PubMedCrossRefGoogle Scholar
  43. Henderson, A. J., Holzleitner, I. J., Talamas, S. N., & Perrett, D. I. (2016). Perception of health from facial cues. Philosophical Transactions of the Royal Society B, 371, 20150380.CrossRefGoogle Scholar
  44. Henrich, J., Heine, S. J., & Norenzayan, A. (2010). The weirdest people in the world? Behavioral and Brain Sciences, 33, 61–83, disc. 83–135. doi: https://doi.org/10.1017/S0140525X0999152X
  45. Herbert, C., Platte, P., Wiemer, J., Macht, M., & Blumenthal, T. D. (2014). Supertaster, super reactive: Oral sensitivity for bitter taste modulates emotional approach and avoidance behavior in the affective startle paradigm. Physiology and Behavior, 135, 198–207.PubMedCrossRefGoogle Scholar
  46. Jacobsen, T. (2010). Beauty and the brain: Culture, history and individual differences in aesthetic appreciation. Journal of Anatomy, 216, 184–191.PubMedCrossRefGoogle Scholar
  47. Jacobsen, T., Schubotz, R. I., Höfel, L., & van Cramon, D. Y. (2006). Brain correlates of aesthetic judgment of beauty. NeuroImage, 29, 276–285.Google Scholar
  48. Jennings, B. J., & Kingdom, F. A. (2017). Searching for radial symmetry. i-Perception, 8, 2041669517725758.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Jones, B. C., Little, C., Penton-Voak, I. S., Tiddeman, B. P., Burt, D. M., & Perrett, D. I. (2001). Facial symmetry and judgements of apparent health: Support for a “good genes” explanation of the attractiveness–symmetry relationship. Evolution and Human Behavior, 22, 417–429.CrossRefGoogle Scholar
  50. Julesz, B. (1971). Foundations of cyclopean perception. Oxford, UK: University of Chicago Press.Google Scholar
  51. Kenneth, J. H. (1923). Mental reactions to smell stimuli. Psychological Review, 30, 77–79.CrossRefGoogle Scholar
  52. Knöferle, K., & Spence, C. (2012). Crossmodal correspondences between sounds and tastes. Psychonomic Bulletin & Review, 19, 992–1006. doi: https://doi.org/10.3758/s13423-012-0321-z
  53. Kveraga, K., & Bar, M. (2014). Scene vision: Making sense of what we see. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
  54. Kveraga, K., Boshyan, J., Adams, R. B., Jr., Mote, J., Betz, N., Ward, N., . . . Barrett, L. F. (2015). If it bleeds, it leads: Separating threat from mere negativity. Social Cognitive and Affective Neuroscience, 10, 28–35. doi: https://doi.org/10.1093/scan/nsu007
  55. Langlois, J. H., & Roggman, L. A. (1990). Attractive faces are only average. Psychological Science, 1, 115–121.CrossRefGoogle Scholar
  56. Larsen, R. J., & Diener, E. (1992). Promises and problems with the circumplex model of emotion. In M. S. Clark (Ed). Emotion (pp. 25–59). Thousand Oaks, CA: Sage.Google Scholar
  57. Larson, C. L., Aronoff, J., Sarinopoulos, I. C., & Zhu, D. C. (2009). Recognizing threat: A simple geometric shape activates neural circuitry for threat detection. Journal of Cognitive Neuroscience, 21, 1523–1535.PubMedCrossRefGoogle Scholar
  58. Larson, C. L., Aronoff, J., & Stearns, J. J. (2007). The shape of threat: Simple geometric forms evoke rapid and sustained capture of attention. Emotion, 7, 526–534. doi: https://doi.org/10.1037/1528-3542.7.3.526 PubMedCrossRefGoogle Scholar
  59. Lazarus, R. S. (1991). Progress on a cognitive–motivational–relational theory of emotion. American Psychologist, 46, 819–834.Google Scholar
  60. Liang, P., Biswas, P., Vinnakota, S., Fu, L., Chen, M., Quan, Y., . . . Roy, S. (2016). Invariant effect of vision on taste across two Asian cultures: India and China. Journal of Sensory Studies, 31, 416–422. doi: https://doi.org/10.1111/joss.12225
  61. Liang, P., Roy, S., Chen, M. L., & Zhang, G.-H. (2013). Visual influence of shapes and semantic familiarity on human sweet sensitivity. Behavioural Brain Research, 253, 42–47.PubMedCrossRefGoogle Scholar
  62. Lipson, H., & Cochran, W. (1966). The determination of crystal structures. Ithaca, NY: Cornell University Press.Google Scholar
  63. Little, A. (2014). Domain specificity in human symmetry preferences: Symmetry is most pleasant when looking at human faces. Symmetry, 6, 222–233.CrossRefGoogle Scholar
  64. Little, A. C., Apicella, C. L., & Marlowe, F. W. (2007). Preferences for symmetry in human faces in two cultures: Data from the UK and the Hadza, an isolated group of hunter-gatherers. Proceedings of the Royal Society B, 274, 3113–3117.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Locher, P. J., & Nodine, C. F. (1989). The perceptual value of symmetry. Computers & Mathematics with Applications, 17, 475–484. doi: https://doi.org/10.1016/0898-1221(89)90246-0 CrossRefGoogle Scholar
  66. Lockwood, E. H., & Macmillan, R. H. (1978). Geometric symmetry. Cambridge, UK: Cambridge University Press.Google Scholar
  67. Lundqvist, D., Esteves, F., & Öhman, A. (2004). The face of wrath: The role of features and configurations in conveying social threat. Cognition & Emotion, 18, 161–182.CrossRefGoogle Scholar
  68. Lyman, B. (1979). Representation of complex emotional and abstract meanings by simple forms. Perceptual and Motor Skills, 49, 839–842.PubMedCrossRefGoogle Scholar
  69. Makin, A. D. J., Pecchinenda, A., & Bertamini, M. (2012). Implicit affective evaluation of visual symmetry. Emotion, 12, 1021–1030.PubMedCrossRefGoogle Scholar
  70. Marks, L. E. (1978). The unity of the senses: Interrelations among the modalities. New York, NY: Academic Press.CrossRefGoogle Scholar
  71. Marks, L. E. (1996). On perceptual metaphors. Metaphor and Symbol, 11, 39–66. doi: https://doi.org/10.1207/s15327868ms1101_3 CrossRefGoogle Scholar
  72. Martino, G., & Marks, L. E. (1999). Perceptual and linguistic interactions in speeded classification: Tests of the semantic coding hypothesis. Perception, 28, 903–923.PubMedCrossRefGoogle Scholar
  73. Martino, G., & Marks, L. E. (2001). Synesthesia: Strong and weak. Current Directions in Psychological Science, 10, 61–65.CrossRefGoogle Scholar
  74. McKone, E., Davies, A. A., Fernando, D., Aalders, R., Leung, H., Wickramariyaratne, T., & Platow, M. J. (2010). Asia has the global advantage: Race and visual attention. Vision Research, 50, 1540–1549.PubMedCrossRefGoogle Scholar
  75. Meyers, L. S., Gamst, G., & Guarino, A. J. (2006). Applied multivariate research: Design and interpretation. Thousand Oaks, CA: Sage.Google Scholar
  76. Møller, A. P., & Thornhill, R. (1998). Bilateral symmetry and sexual selection: A meta-analysis. American Naturalist, 151, 174–192.PubMedCrossRefGoogle Scholar
  77. Mühlenbeck, C., Liebal, K., Pritsch, C., & Jacobsen, T. (2016). Differences in the visual perception of symmetric patterns in orangutans (Pongo pygmaeus abelii) and two human cultural groups: A comparative eye-tracking study. Frontiers in Psychology, 7, 408:1–14. doi: https://doi.org/10.3389/fpsyg.2016.00408 Google Scholar
  78. Munar, E., Gómez-Puerto, G., Call, J., & Nadal, M. (2015). Common visual preference for curved contours in humans and great apes. PLoS ONE, 10, e0141106:1–15. doi: https://doi.org/10.1371/journal.pone.0141106 Google Scholar
  79. Ngo, M. K., Velasco, C., Salgado, A., Boehm, E., O’Neill, D., & Spence, C. (2013). Assessing crossmodal correspondences in exotic fruit juices: The case of shape and sound symbolism. Food Quality and Preference, 28, 361–369.CrossRefGoogle Scholar
  80. Nisbett, R. E., & Miyamoto, Y. (2005). The influence of culture: Holistic versus analytic perception. Trends in Cognitive Sciences, 9, 467–473. doi: https://doi.org/10.1016/j.tics.2005.08.004 PubMedCrossRefGoogle Scholar
  81. Osgood, C. E. (1960). The cross-cultural generality of visual–verbal synesthetic tendencies. Behavioral Science, 5, 146–169.CrossRefGoogle Scholar
  82. Osgood, C. E., Suci, G. J., & Tannenbaum, P. H. (1957). The measurement of meaning. Urbana, IL: University of Illinois Press.Google Scholar
  83. Palmer, S. E., & Hemenway, K. (1978). Orientation and symmetry: Effects of multiple, rotational, and near symmetries. Journal of Experimental Psychology: Human Perception and Performance, 4, 691–702. doi: https://doi.org/10.1037/0096-1523.4.4.691 PubMedGoogle Scholar
  84. Palmer, S. E., Langlois, T. A., & Schloss, K. B. (2016). Music-to-color associations of single-line piano melodies in non-synesthetes. Multisensory Research, 29, 157–193.PubMedCrossRefGoogle Scholar
  85. Palmer, S. E., Schloss, K. B., & Sammartino, J. (2013a). Visual aesthetics and human preference. Annual Review of Psychology, 64, 77–107. doi: https://doi.org/10.1146/annurev-psych-120710-100504 PubMedCrossRefGoogle Scholar
  86. Palmer, S. E., Schloss, K. B., Xu, Z., & Prado-León, L. R. (2013b). Music–color associations are mediated by emotion. Proceedings of the National Academy of Sciences, 110, 8836–8841.CrossRefGoogle Scholar
  87. Parise, C. V. (2016). Crossmodal correspondences: Standing issues and experimental guidelines. Multisensory Research, 29, 7–28. doi: https://doi.org/10.1163/22134808-00002502 PubMedCrossRefGoogle Scholar
  88. Parise, C. V., Knorre, K., & Ernst, M. O. (2014). Natural auditory scene statistics shapes human spatial hearing. Proceedings of the National Academy of Sciences, 111, 6104–6108.CrossRefGoogle Scholar
  89. Parise, C. V., & Spence, C. (2012). Audiovisual crossmodal correspondences and sound symbolism: A study using the implicit association test. Experimental Brain Research, 220, 319–333. doi: https://doi.org/10.1007/s00221-012-3140-6 PubMedCrossRefGoogle Scholar
  90. Parise, C. V., & Spence, C. (2013). Audiovisual cross-modal correspondences in the general population. In J. Simner & E. M. Hubbard (Eds.), Oxford handbook of synesthesia (pp. 790–815). Oxford, UK: Oxford University Press.Google Scholar
  91. Perrett, D. I., Burt, D. M., Penton-Voak, I. S., Lee, K. J., Rowland, D., & Edwards, R. (1999). Symmetry and human facial attractiveness. Evolution and Human Behavior, 20, 295–307.CrossRefGoogle Scholar
  92. Peyrot Des Gachons, C., Beauchamp, G. K., Stern, R. M., Koch, K. L., & Breslin, P. S. (2011). Bitter taste induces nausea. Current Biology, 21, 247–248.CrossRefGoogle Scholar
  93. Poffenberger, A. T., & Barrows, B. E. (1924). The feeling value of lines. Journal of Applied Psychology, 8, 187–205.CrossRefGoogle Scholar
  94. Reber, R., Schwarz, N., & Winkielman, P. (2004). Processing fluency and aesthetic pleasure: Is beauty in the perceiver’s processing experience? Personality and Social Psychology Review, 8, 364–382. doi: https://doi.org/10.1207/s15327957pspr0804_3 PubMedCrossRefGoogle Scholar
  95. Reber, R., Winkielman, P., & Schwarz, N. (1998). Effects of perceptual fluency on affective judgments. Psychological Science, 9, 45–48. doi: https://doi.org/10.1111/1467-9280.00008 CrossRefGoogle Scholar
  96. Rhodes, G. (2006). The evolutionary psychology of facial beauty. Annual Review of Psychology, 57, 199–226.PubMedCrossRefGoogle Scholar
  97. Rhodes, G., Proffitt, F., Grady, J. M., & Sumich, A. (1998). Facial symmetry and the perception of beauty. Psychonomic Bulletin & Review, 5, 659–669. doi: https://doi.org/10.3758/BF03208842 CrossRefGoogle Scholar
  98. Rhodes, G., Yoshikawa, S., Clark, A., Lee, K., McKay, R., & Akamatsu, S. (2001). Attractiveness of facial averageness and symmetry in non-Western cultures: In search of biologically based standards of beauty. Perception, 30, 611–625.PubMedCrossRefGoogle Scholar
  99. Rock, I., & Leaman, R. (1963). An experimental analysis of visual symmetry. Acta Psychologica, 21, 171–183.CrossRefGoogle Scholar
  100. Rodríguez, I., Gumbert, A., De Ibarra, N. H., Kunze, J., & Giurfa, M. (2004). Symmetry is in the eye of the “beeholder”: Innate preference for bilateral symmetry in flower-naïve bumblebees. Naturwissenschaften, 91, 374–377.PubMedGoogle Scholar
  101. Royer, F. L. (1981). Detection of symmetry. Journal of Experimental Psychology: Human Perception and Performance, 7, 1186–1210. doi: https://doi.org/10.1037/0096-1523.7.6.1186 PubMedGoogle Scholar
  102. Salgado-Montejo, A., Alvarado, J. A., Velasco, C., Salgado, C. J., Hasse, K., & Spence, C. (2015). The sweetest thing: The influence of angularity, symmetry, and the number of elements on shape–valence and shape–taste matches. Frontiers in Psychology, 6, 1382:1–17. doi: https://doi.org/10.3389/fpsyg.2015.01382 Google Scholar
  103. Scherer, K. R., & Shorr, A., & Johnstone, T. (Eds.). (2001). Appraisal processes in emotion: Theory, methods, research. New York, NY: Oxford University Press.Google Scholar
  104. Schifferstein, H. N. J., & Tanudjaja, I. (2004). Visualizing fragrances through colors: The mediating role of emotions. Perception, 33, 1249–1266PubMedCrossRefGoogle Scholar
  105. Schmidtmann, G., Jennings, B. J., & Kingdom, F. A. A. (2015). Shape recognition: Convexities, concavities and things in between. Scientific Reports, 5, 17142. doi: https://doi.org/10.1038/srep17142 PubMedPubMedCentralCrossRefGoogle Scholar
  106. Silvia, P. J., & Barona, C. M. (2009). Do people prefer curved objects? Angularity, expertise, and aesthetic preference. Empirical Studies of the Arts, 27, 25–42.CrossRefGoogle Scholar
  107. Smith, L. B., & Sera, M. D. (1992). A developmental analysis of the polar structure of dimensions. Cognitive Psychology, 24, 99–142. doi: https://doi.org/10.1016/0010-0285(92)90004-L PubMedCrossRefGoogle Scholar
  108. Spence, C. (2011). Crossmodal correspondences: A tutorial review. Attention, Perception, & Psychophysics, 73, 971–995. doi: https://doi.org/10.3758/s13414-010-0073-7 CrossRefGoogle Scholar
  109. Spence, C. (2012). Managing sensory expectations concerning products and brands: Capitalizing on the potential of sound and shape symbolism. Journal of Consumer Psychology, 22, 37–54.CrossRefGoogle Scholar
  110. Spence, C., & Deroy, O. (2013). On the shapes of flavours. Theoria et Historia Scientiarum, 10, 207–238.CrossRefGoogle Scholar
  111. Spence, C., & Gallace, A. (2011). Tasting shapes and words. Food Quality and Preference, 22, 290–295.CrossRefGoogle Scholar
  112. Spence, C., & Ngo, M. K. (2012). Assessing the shape symbolism of the taste, flavour, and texture of foods and beverages. Flavour, 1, 12. doi: https://doi.org/10.1186/2044-7248-1-12 CrossRefGoogle Scholar
  113. Spence, C., Ngo, M. K., Percival, B., & Smith, B. (2013). Crossmodal correspondences: Assessing shape symbolism for cheese. Food Quality and Preference, 28, 206–212.CrossRefGoogle Scholar
  114. Spence, C., Wan, X., Woods, A., Velasco, C., Deng, J., Youssef, J., & Deroy, O. (2015). On tasty colours and colourful tastes? Assessing, explaining, and utilizing crossmodal correspondences between colours and basic tastes. Flavour, 4, 23.CrossRefGoogle Scholar
  115. Steiner, J. E., Glaser, D., Hawilo, M. E., & Berridge, K. C. (2001). Comparative expression of hedonic impact: Affective reactions to taste by human infants and other primates. Neuroscience & Biobehavioral Reviews, 25, 53–74.CrossRefGoogle Scholar
  116. Stevens, S. S. (1957). On the psychophysical law. Psychological Review, 64, 153–181. doi: https://doi.org/10.1037/h0046162 PubMedCrossRefGoogle Scholar
  117. Tinio, P. P. L., & Leder, H. (2009). Just how stable are stable aesthetic features? Symmetry, complexity, and the jaws of massive familiarization. Acta Psychologica, 130, 241–250. doi: https://doi.org/10.1016/j.actpsy.2009.01.001 PubMedCrossRefGoogle Scholar
  118. Tomasello, M. (2000). The cultural origins of human cognition. Boston, MA: Harvard University Press.Google Scholar
  119. Travers, J. B., & Norgren, R. (1986). Electromyographic analysis of the ingestion and rejection of sapid stimuli in the rat. Behavioral Neuroscience, 100, 544–555.PubMedCrossRefGoogle Scholar
  120. Velasco, C., Salgado-Montejo, A., Marmolejo-Ramos, F., & Spence, C. (2014). Predictive packaging design: Tasting shapes, typefaces, names, and sounds. Food Quality and Preference, 34, 88–95.CrossRefGoogle Scholar
  121. Velasco, C., Woods, A. T., Deroy, O., & Spence, C. (2015). Hedonic mediation of the crossmodal correspondence between taste and shape. Food Quality and Preference, 41, 151–158.CrossRefGoogle Scholar
  122. Velasco, C., Woods, A., Liu, J., & Spence, C. (2016a). Assessing the role of taste intensity and hedonics in taste–shape correspondences. Multisensory Research, 29, 209–221.PubMedCrossRefGoogle Scholar
  123. Velasco, C., Woods, A. T., Marks, L. E., Cheok, A. D., & Spence, C. (2016b). The semantic basis of taste–shape associations. Peer J, 4, e1644. doi: https://doi.org/10.7717/peerj.1644 PubMedPubMedCentralCrossRefGoogle Scholar
  124. Velasco, C., Woods, A. T., Petit, O., Cheok, A. D., & Spence, C. (2016c). Crossmodal correspondences between taste and shape, and their implications for product packaging: A review. Food Quality and Preference, 52, 17–26.CrossRefGoogle Scholar
  125. Vetter, T., Poggio, T., & Bülthoff, H. H. (1994). The importance of symmetry and virtual views in three-dimensional object recognition. Current Biology, 4, 18–23.PubMedCrossRefGoogle Scholar
  126. Wagemans, J. (1995). Detection of visual symmetries. Spatial Vision, 9, 9–32.PubMedCrossRefGoogle Scholar
  127. Wagemans, J. (1997). Characteristics and models of human symmetry detection. Trends in Cognitive Sciences, 1, 346–352.PubMedCrossRefGoogle Scholar
  128. Walker, L., & Walker, P. (2016). Cross-sensory mapping of feature values in the size–brightness correspondence can be more relative than absolute. Journal of Experimental Psychology: Human Perception and Performance, 42, 138–180.PubMedGoogle Scholar
  129. Walker, P. (2012). Cross-sensory correspondences and cross talk between dimensions of connotative meaning: Visual angularity is hard, high-pitched, and bright. Attention, Perception, & Psychophysics, 74, 1792–1809. doi: https://doi.org/10.3758/s13414-012-0341-9 CrossRefGoogle Scholar
  130. Wan, X., Woods, A. T., van den Bosch, J. J. F., McKenzie, K. J., Velasco, C., & Spence, C. (2014). Cross-cultural differences in crossmodal correspondences between basic tastes and visual features. Frontiers in Psychology, 5, 1365. doi: https://doi.org/10.3389/fpsyg.2014.01365 PubMedPubMedCentralCrossRefGoogle Scholar
  131. Watson, D., & Tellegen, A. (1985). Toward a consensual structure of mood. Psychological Bulletin, 98, 219–235.PubMedCrossRefGoogle Scholar
  132. Watson, P. J., & Thornhill, R. (1994). Fluctuating asymmetry and sexual selection. Trends in Ecology & Evolution, 9, 21–25.CrossRefGoogle Scholar
  133. Weyl, H. (2016). Symmetry. Princeton, NJ: Princeton University Press. (Original work published 1952)Google Scholar
  134. Wilkinson, F., Wilson, H. R., & Habak, C. (1998). Detection and recognition of radial frequency patterns. Vision Research, 38, 3555–3568. doi: https://doi.org/10.1016/S0042-6989(98)00039-X PubMedCrossRefGoogle Scholar
  135. Wu, S. V., Rozengurt, N., Yang, M., Young, S. H., Sinnett-Smith, J., & Rozengurt, E. (2002). Expression of bitter taste receptors of the T2R family in the gastrointestinal tract and enteroendocrine STC-1 cells. Proceedings of the National Academy of Sciences, 99, 2392–2397.CrossRefGoogle Scholar
  136. Yarmolinsky, D. A., Zuker, C. S., & Ryba, N. J. P. (2009). Common sense about taste: From mammals to insects. Cell, 139, 234–244. doi: https://doi.org/10.1016/j.cell.2009.10.001 PubMedPubMedCentralCrossRefGoogle Scholar
  137. Young, S. G., Sacco, D. F., & Hugenberg, K. (2011). Vulnerability to disease is associated with a domain-specific preference for symmetrical faces relative to symmetrical non-face stimuli. European Journal Social Psychology, 41, 558–563.CrossRefGoogle Scholar
  138. Zhang, Y., Hoon, M., Chandrashekar, J., Mueller, K. L., Cook, B., Wu, D., . . . Ryba, N. J. P. (2003). Coding of sweet, bitter, and umami tastes: Different receptor cells sharing similar signaling pathways. Cell, 112, 293–301. doi: https://doi.org/10.1016/S0092-8674(03)00071-0

Copyright information

© The Psychonomic Society, Inc. 2017

Authors and Affiliations

  1. 1.Crossmodal Research Laboratory, Department of Experimental PsychologyUniversity of OxfordOxfordUK
  2. 2.Departments of Radiology and Clinical NeurosciencesCentre Hospitalier Universitaire Vaudois (CHUV)LausanneSwitzerland
  3. 3.University of Lausanne (UniL)LausanneSwitzerland
  4. 4.Department of MarketingBI Norwegian Business SchoolOsloNorway
  5. 5.Department of PsychologyNational Cheng Kung UniversityTainanTaiwan
  6. 6.Department of MedicineMackay Medical CollegeNew Taipei CityTaiwan

Personalised recommendations