Attention, Perception, & Psychophysics

, Volume 80, Issue 1, pp 193–210 | Cite as

From eyes to hands: Transfer of learning in the Simon task across motor effectors

  • Ashika Verghese
  • Jason B. Mattingley
  • Phoebe E. Palmer
  • Paul E. Dux
Article

Abstract

Inhibition of irrelevant and conflicting information and responses is crucial for goal-directed behaviour and adaptive functioning. In the Simon task, for example, responses are slowed if their mappings are spatially incongruent with stimuli that must be discriminated on a nonspatial dimension. Previous work has shown that practice with incongruent spatial mappings can reduce or even reverse the Simon effect. We asked whether such practice transfers between the manual and oculomotor systems and if so to what extent this occurs across a range of behavioural tasks. In two experiments, one cohort of participants underwent anti-saccade training, during which they repeatedly inhibited the reflexive impulse to look toward a briefly presented target. Additionally, two active-control training groups were included, in which participants either trained on Pro-saccade or Fixation training regimens. In Experiment 1, we probed whether the Simon effect and another inhibitory paradigm, the Stroop task, showed differential effects after training. In Experiment 2, we included a larger battery of inhibitory tasks (Simon, Stroop, flanker and stop-signal) and noninhibitory control measures (multitasking and visual search) to assess the limits of transfer. All three training regimens led to behavioural improvements in the trained-upon task, but only the anti-saccade training group displayed benefits that transferred to the manual response modality. This transfer of training benefit replicated across the two experiments but was restricted to the Simon effect. Evidence for transfer of inhibition training across motor systems offers important insights into the nature of stimulus-response representations and their malleability.

Keywords

Attention Eye Movements Cognitive inhibition 

Notes

Acknowledgments

This work was supported by an Australian Research Council (ARC) Discovery Grant (DP140100266), the Australian Research Council (ARC) SRI Science of Learning Research Centre (SR120300015) and the ARC Centre of Excellence for Integrative Brain Function (ARC Centre Grant CE140100007). PED was supported by an ARC Future Fellowship (FT120100033). JBM was supported by an ARC Australian Laureate Fellowship (FL110100103). The authors thank Kristina Horne for assisting with data collection.

References

  1. Aron, A. R. (2011). From reactive to proactive and selective control: developing a richer model for stopping inappropriate responses. Biol Psychiatry, 69(12), e55-68. doi:  https://doi.org/10.1016/j.biopsych.2010.07.024 CrossRefPubMedGoogle Scholar
  2. Aron, A. R., Robbins, T. W., & Poldrack, R. A. (2004). Inhibition and the right inferior frontal cortex. Trends Cogn Sci, 8(4), 170-177. doi:  https://doi.org/10.1016/j.tics.2004.02.010 CrossRefPubMedGoogle Scholar
  3. Bechara, A. (2005). Decision making, impulse control and loss of willpower to resist drugs: a neurocognitive perspective. Nat Neurosci, 8(11), 1458-1463. doi:  https://doi.org/10.1038/nn1584 CrossRefPubMedGoogle Scholar
  4. Bender, A. D., Filmer, H. L., Garner, K. G., Naughtin, C. K., & Dux, P. E. (2016). On the relationship between response selection and response inhibition: An individual differences approach. Atten Percept Psychophys. doi:  https://doi.org/10.3758/s13414-016-1158-8
  5. Berkman, E. T., Kahn, L. E., & Merchant, J. S. (2014). Training-Induced Changes in Inhibitory Control Network Activity. Journal of Neuroscience, 34(1), 149-157.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Brainard, D. H. (1997). The Psychophysics Toolbox. Spat Vis, 10(4), 433-436.CrossRefPubMedGoogle Scholar
  7. Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Hillsdale, N.J.: L. Erlbaum Associates.Google Scholar
  8. Cornelissen, F. W., Peters, E. M., & Palmer, J. (2002). The Eyelink Toolbox: eye tracking with MATLAB and the Psychophysics Toolbox. Behav Res Methods Instrum Comput, 34(4), 613-617.CrossRefPubMedGoogle Scholar
  9. Diamond, A. (2013). Executive functions. Annu Rev Psychol, 64, 135-168. doi:  https://doi.org/10.1146/annurev-psych-113011-143750 CrossRefPubMedGoogle Scholar
  10. Dyckman, K. A. (2007). FMRI/EEG study of changes in behavior and brain activity during and after saccade practice Vol. Masters Thesis. Retrieved from http://purl.galileo.usg.edu/uga%5Fetd/dyckman%5Fkara%5Fa%5F200712%5Fphd
  11. Dyckman, K. A., & McDowell, J. E. (2005). Behavioral plasticity of antisaccade performance following daily practice. Experimental brain research, 162(1), 63-69. doi:  https://doi.org/10.1007/s00221-004-2105-9 CrossRefPubMedGoogle Scholar
  12. Enge, S., Behnke, A., Fleischhauer, M., Kuttler, L., Kliegel, M., & Strobel, A. (2014). No evidence for true training and transfer effects after inhibitory control training in young healthy adults. J Exp Psychol Learn Mem Cogn, 40(4), 987-1001. doi:  https://doi.org/10.1037/a0036165 CrossRefPubMedGoogle Scholar
  13. Fan, J., Flombaum, J. I., McCandliss, B. D., Thomas, K. M., & Posner, M. I. (2003). Cognitive and brain consequences of conflict. Neuroimage, 18(1), 42-57.CrossRefPubMedGoogle Scholar
  14. Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods, 39(2), 175-191.CrossRefPubMedGoogle Scholar
  15. Fischer, B., Gezeck, S., & Hartnegg, K. (2000). On the production and correction of involuntary prosaccades in a gap antisaccade task. Vision Res, 40(16), 2211-2217.CrossRefPubMedGoogle Scholar
  16. Friedman, N. P., & Miyake, A. (2004). The relations among inhibition and interference control functions: a latent-variable analysis. J Exp Psychol Gen, 133(1), 101-135. doi:  https://doi.org/10.1037/0096-3445.133.1.101 CrossRefPubMedGoogle Scholar
  17. Garner, K. G., Tombu, M. N., & Dux, P. E. (2014). The influence of training on the attentional blink and psychological refractory period. Atten Percept Psychophys, 76(4), 979-999. doi:  https://doi.org/10.3758/s13414-014-0638-y CrossRefPubMedGoogle Scholar
  18. Hamm, J. P., Dyckman, K. A., Ethridge, L. E., McDowell, J. E., & Clementz, B. A. (2010). Preparatory activations across a distributed cortical network determine production of express saccades in humans. Journal of Neuroscience, 30(21), 7350-7357. doi:  https://doi.org/10.1523/jneurosci.0785-10.2010 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Hommel, B., Proctor, R. W., & Vu, K. P. (2004). A feature-integration account of sequential effects in the Simon task. Psychol Res, 68(1), 1-17. doi:  https://doi.org/10.1007/s00426-003-0132-y CrossRefPubMedGoogle Scholar
  20. Houben, K. (2011). Overcoming the urge to splurge: influencing eating behavior by manipulating inhibitory control. J Behav Ther Exp Psychiatry, 42(3), 384-388. doi:  https://doi.org/10.1016/j.jbtep.2011.02.008 CrossRefPubMedGoogle Scholar
  21. Houben, K., Nederkoorn, C., Wiers, R. W., & Jansen, A. (2011). Resisting temptation: decreasing alcohol-related affect and drinking behavior by training response inhibition. Drug Alcohol Depend, 116(1-3), 132-136. doi:  https://doi.org/10.1016/j.drugalcdep.2010.12.011 CrossRefPubMedGoogle Scholar
  22. Iani, C., Rubichi, S., Gherri, E., & Nicoletti, R. (2009). Co-occurrence of sequential and practice effects in the Simon task: Evidence for two independent mechanisms affecting response selection. Mem Cognit, 37(3), 358-367. doi:  https://doi.org/10.3758/MC.37.3.358 CrossRefPubMedGoogle Scholar
  23. Jones, A., & Field, M. (2013). The effects of cue-specific inhibition training on alcohol consumption in heavy social drinkers. Exp Clin Psychopharmacol, 21(1), 8-16. doi:  https://doi.org/10.1037/a0030683 CrossRefPubMedGoogle Scholar
  24. Kornblum, S., Hasbroucq, T., & Osman, A. (1990). Dimensional overlap: cognitive basis for stimulus-response compatibility--a model and taxonomy. Psychol Rev, 97(2), 253-270.CrossRefPubMedGoogle Scholar
  25. Kornblum, S., & Lee, J. W. (1995). Stimulus-response compatibility with relevant and irrelevant stimulus dimensions that do and do not overlap with the response. J Exp Psychol Hum Percept Perform, 21(4), 855-875.CrossRefPubMedGoogle Scholar
  26. Kwak, H. W., Dagenbach, D., & Egeth, H. (1991). Further evidence for a time-independent shift of the focus of attention. Perception & psychophysics, 49(5), 473-480.CrossRefGoogle Scholar
  27. Liu, X., Banich, M. T., Jacobson, B. L., & Tanabe, J. L. (2004). Common and distinct neural substrates of attentional control in an integrated Simon and spatial Stroop task as assessed by event-related fMRI. Neuroimage, 22(3), 1097-1106. doi:  https://doi.org/10.1016/J.Neuroimage.2004.02.033 CrossRefPubMedGoogle Scholar
  28. Liu, X., Park, Y., Gu, X., & Fan, J. (2010). Dimensional overlap accounts for independence and integration of stimulus-response compatibility effects. Atten Percept Psychophys, 72(6), 1710-1720. doi:  https://doi.org/10.3758/APP.72.6.1710 CrossRefPubMedGoogle Scholar
  29. Logan, G. D., & Burkell, J. (1986). Dependence and Independence in Responding to Double Stimulation - a Comparison of Stop, Change, and Dual-Task Paradigms. Journal of Experimental Psychology-Human Perception and Performance, 12(4), 549-563.CrossRefGoogle Scholar
  30. Logan, G. D., Schachar, R. J., & Tannock, R. (1997). Impulsivity and inhibitory control. Psychol Sci, 8(1), 60-64. doi:  https://doi.org/10.1111/J.1467-9280.1997.Tb00545.X CrossRefGoogle Scholar
  31. Lugli, L., Iani, C., Nicoletti, R., & Rubichi, S. (2013). Emergence of the go/no-go Simon effect by means of practice and mixing paradigms. Acta Psychol (Amst), 144(1), 19-24. doi:  https://doi.org/10.1016/j.actpsy.2013.04.021 CrossRefGoogle Scholar
  32. Manuel, A. L., Bernasconi, F., & Spierer, L. (2013). Plastic modifications within inhibitory control networks induced by practicing a stop-signal task: an electrical neuroimaging study. Cortex, 49(4), 1141-1147. doi:  https://doi.org/10.1016/j.cortex.2012.12.009 CrossRefPubMedGoogle Scholar
  33. Manuel, A. L., Grivel, J., Bernasconi, F., Murray, M. M., & Spierer, L. (2010). Brain dynamics underlying training-induced improvement in suppressing inappropriate action. Journal of Neuroscience, 30(41), 13670-13678. doi:  https://doi.org/10.1523/JNEUROSCI.2064-10.2010 CrossRefPubMedGoogle Scholar
  34. Marini, M., Iani, C., Nicoletti, R., & Rubichi, S. (2011). Between-task transfer of learning from spatial compatibility to a color Stroop task. Experimental Psychology, 58, 473-479. doi:  https://doi.org/10.1027/1618-3169/a000115 CrossRefPubMedGoogle Scholar
  35. Milham, M. P., Banich, M. T., Claus, E. D., & Cohen, N. J. (2003). Practice-related effects demonstrate complementary roles of anterior cingulate and prefrontal cortices in attentional control. Neuroimage, 18(2), 483-493.CrossRefPubMedGoogle Scholar
  36. Millner, A. J., Jaroszewski, A. C., & Chamarthi, H. (2012). Behavioral and electrophysiological correlates of training-induced cognitive control improvements. Neuroimage.Google Scholar
  37. Moher, J., & Song, J. H. (2014). Target selection bias transfers across different response actions. J Exp Psychol Hum Percept Perform, 40(3), 1117-1130. doi:  https://doi.org/10.1037/a0035739 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Moher, J., & Song, J. H. (2016). Target selection biases from recent experience transfer across effectors. Atten Percept Psychophys, 78(2), 415-426. doi:  https://doi.org/10.3758/s13414-015-1011-5 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Nigg, J. T. (2001). Is ADHD a disinhibitory disorder? Psychol Bull, 127(5), 571-598.CrossRefPubMedGoogle Scholar
  40. Nobre, A. C., Gitelman, D. R., Dias, E. C., & Mesulam, M. M. (2000). Covert visual spatial orienting and saccades: overlapping neural systems. Neuroimage, 11(3), 210-216. doi:  https://doi.org/10.1006/nimg.2000.0539 CrossRefPubMedGoogle Scholar
  41. Noel, X., Brevers, D., & Bechara, A. (2013). A neurocognitive approach to understanding the neurobiology of addiction. Curr Opin Neurobiol, 23(4), 632-638. doi:  https://doi.org/10.1016/j.conb.2013.01.018 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Notebaert, W., Soetens, E., & Melis, A. (2001). Sequential analysis of a Simon task - evidence for an attention-shift account. Psychological Research-Psychologische Forschung, 65(3), 170-184. doi:  https://doi.org/10.1007/S004260000054 CrossRefGoogle Scholar
  43. Pashler, H. (1994). Dual-task interference in simple tasks: data and theory. Psychological bulletin, 116(2), 220-244.CrossRefPubMedGoogle Scholar
  44. Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spat Vis, 10(4), 437-442.CrossRefPubMedGoogle Scholar
  45. Peterson, B. S., Kane, M. J., Alexander, G. M., & Lacadie, C. (2002). An event-related functional MRI study comparing interference effects in the Simon and Stroop tasks. Brain Research Cognitive Brain Research.Google Scholar
  46. Pratte, M. S., Rouder, J. N., Morey, R. D., & Feng, C. N. (2010). Exploring the differences in distributional properties between Stroop and Simon effects using delta plots. Attention Perception & Psychophysics, 72(7), 2013-2025. doi:  https://doi.org/10.3758/APP.72.7.2013 CrossRefGoogle Scholar
  47. Proctor, R. W., Marble, J. G., & Vu, K. P. (2000). Mixing incompatible mapped location-relevant trials with location-irrelevant trials: effects of stimulus mode on the reverse Simon effect. Psychol Res, 64(1), 11-24.CrossRefPubMedGoogle Scholar
  48. Proctor, R. W., Yamaguchi, M., Zhang, Y., & Vu, K. P. (2009). Influence of visual stimulus mode on transfer of acquired spatial associations. J Exp Psychol Learn Mem Cogn, 35(2), 434-445. doi:  https://doi.org/10.1037/a0014529 CrossRefPubMedGoogle Scholar
  49. Redick, T. S., Shipstead, Z., Harrison, T. L., Hicks, K. L., Fried, D. E., Hambrick, D. Z., . . . Engle, R. W. (2013). No evidence of intelligence improvement after working memory training: a randomized, placebo-controlled study. J Exp Psychol Gen, 142(2), 359-379. doi:  https://doi.org/10.1037/a0029082
  50. Schapkin, S. A., Falkenstein, M., Marks, A., & Griefahn, B. (2007). Practice-related effects in a Go-Nogo task. Percept Mot Skills, 105(3 Pt 2), 1275-1288. doi:  https://doi.org/10.2466/pms.105.4.1275-1288 CrossRefPubMedGoogle Scholar
  51. Schubert, T., Strobach, T., & Karbach, J. (2014). New directions in cognitive training: on methods, transfer, and application. Psychol Res, 78(6), 749-755. doi:  https://doi.org/10.1007/s00426-014-0619-8 CrossRefPubMedGoogle Scholar
  52. Shipstead, Z., Redick, T. S., & Engle, R. W. (2012). Is working memory training effective? Psychological bulletin, 138(4), 628-654. doi:  https://doi.org/10.1037/a0027473 CrossRefPubMedGoogle Scholar
  53. Simon, J. R., Craft, J. L., & Webster, J. B. (1973). Reactions toward the stimulus source: analysis of correct responses and errors over a five-day period. J Exp Psychol, 101(1), 175-178.CrossRefPubMedGoogle Scholar
  54. Simons, D. J., Boot, W. R., Charness, N., Gathercole, S. E., Chabris, C. F., Hambrick, D. Z., & Stine-Morrow, E. A. L. (2016). Do “Brain-Training” Programs Work? Psychological Science in the Public Interest, 17(3), 103-186. doi:  https://doi.org/10.1177/1529100616661983 CrossRefPubMedGoogle Scholar
  55. Soetens, E., Maetens, K., & Zeischka, P. (2010). Practice-induced and sequential modulations of the Simon effect. Atten Percept Psychophys, 72(4), 895-911. doi:  https://doi.org/10.3758/APP.72.4.895 CrossRefPubMedGoogle Scholar
  56. Spierer, L., Chavan, C. F., & Manuel, A. L. (2013). Training-induced behavioral and brain plasticity in inhibitory control. Front Hum Neurosci, 7, 427. doi:  https://doi.org/10.3389/fnhum.2013.00427 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of experimental psychology.Google Scholar
  58. Tagliabue, M., Zorzi, M., Umilta, C., & Bassignani, F. (2000). The role of long-term-memory and short-term-memory links in the Simon effect. J Exp Psychol Hum Percept Perform, 26(2), 648-670.CrossRefPubMedGoogle Scholar
  59. Thorell, L. B., Lindqvist, S., Bergman Nutley, S., Bohlin, G., & Klingberg, T. (2009a). Training and transfer effects of executive functions in preschool children. Dev Sci, 12(1), 106-113. doi:  https://doi.org/10.1111/j.1467-7687.2008.00745.x CrossRefPubMedGoogle Scholar
  60. Thorell, L. B., Lindqvist, S., Nutley, S. B., Bohlin, G., & Klingberg, T. (2009b). Training and transfer effects of executive functions in preschool children. Dev Sci, 12(1), 106-113.CrossRefPubMedGoogle Scholar
  61. Valle-Inclan, F., & Redondo, M. (1998). On the automaticity of ipsilateral response activation in the Simon effect. Psychophysiology, 35(4), 366-371.CrossRefPubMedGoogle Scholar
  62. Verbruggen, F., Adams, R., & Chambers, C. D. (2012). Proactive motor control reduces monetary risk taking in gambling. Psychol Sci, 23(7), 805-815. doi:  https://doi.org/10.1177/0956797611434538 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Verbruggen, F., & Logan, G. D. (2008). Automatic and controlled response inhibition: associative learning in the go/no-go and stop-signal paradigms. J Exp Psychol Gen, 137(4), 649-672. doi:  https://doi.org/10.1037/a0013170 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Vu, K. P. L. (2007). Influences on the Simon effect of prior practice with spatially incompatible mappings: Transfer within and between horizontal and vertical dimensions. Memory & cognition, 35(6), 1463-1471. doi:  https://doi.org/10.3758/Bf03193616 CrossRefGoogle Scholar
  65. Wang, L., & Weekes, B. (2014). Neural correlates of the Simon effect modulated by practice with spatial mapping. Neuropsychologia, 63, 72-84. doi:  https://doi.org/10.1016/j.neuropsychologia.2014.08.019 CrossRefPubMedGoogle Scholar
  66. Welch, D. B., & Seitz, A. R. (2013). Processing irrelevant location information: practice and transfer effects in a Simon task. PLoS One, 8(7), e64993. doi:  https://doi.org/10.1371/journal.pone.0064993 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Yamaguchi, M., Chen, J., & Proctor, R. W. (2015). Transfer of learning in choice reactions: The roles of stimulus type, response mode, and set-level compatibility. Memory & Cognition, 43, 825-836. doi:  https://doi.org/10.3758/s13421-015-0518-2 CrossRefGoogle Scholar
  68. Zhao, X., Chen, L., Fu, L. L., & Maes, J. H. R. (2015). “Wesley says”: a children's response inhibition playground training game yields preliminary evidence of transfer effects. Frontiers in Psychology, 6.Google Scholar

Copyright information

© The Psychonomic Society, Inc. 2017

Authors and Affiliations

  • Ashika Verghese
    • 1
  • Jason B. Mattingley
    • 1
    • 2
  • Phoebe E. Palmer
    • 1
  • Paul E. Dux
    • 1
  1. 1.School of PsychologyThe University of QueenslandSt. LuciaAustralia
  2. 2.Queensland Brain InstituteThe University of QueenslandSt. LuciaAustralia

Personalised recommendations