Attention, Perception, & Psychophysics

, Volume 79, Issue 5, pp 1255–1274 | Cite as

Studying visual attention using the multiple object tracking paradigm: A tutorial review

  • Hauke S. Meyerhoff
  • Frank Papenmeier
  • Markus Huff
Article

Abstract

Human observers are capable of tracking multiple objects among identical distractors based only on their spatiotemporal information. Since the first report of this ability in the seminal work of Pylyshyn and Storm (1988, Spatial Vision, 3, 179–197), multiple object tracking has attracted many researchers. A reason for this is that it is commonly argued that the attentional processes studied with the multiple object paradigm apparently match the attentional processing during real-world tasks such as driving or team sports. We argue that multiple object tracking provides a good mean to study the broader topic of continuous and dynamic visual attention. Indeed, several (partially contradicting) theories of attentive tracking have been proposed within the almost 30 years since its first report, and a large body of research has been conducted to test these theories. With regard to the richness and diversity of this literature, the aim of this tutorial review is to provide researchers who are new in the field of multiple object tracking with an overview over the multiple object tracking paradigm, its basic manipulations, as well as links to other paradigms investigating visual attention and working memory. Further, we aim at reviewing current theories of tracking as well as their empirical evidence. Finally, we review the state of the art in the most prominent research fields of multiple object tracking and how this research has helped to understand visual attention in dynamic settings.

Keywords

Visual attention Dynamic attention Multiple object tracking Pylyshyn 

References

  1. Allen, R., Mcgeorge, P., Pearson, D. G., & Milne, A. B. (2004). Attention and expertise in multiple target tracking. Applied Cognitive Psychology, 18(3), 337–347. doi:10.1002/acp.975 CrossRefGoogle Scholar
  2. Allen, R., Mcgeorge, P., Pearson, D. G., & Milne, A. B. (2006). Multiple-target tracking: A role for working memory? The Quarterly Journal of Experimental Psychology, 59, 1101–1116. doi:10.1080/02724980543000097 PubMedCrossRefGoogle Scholar
  3. Alnaes, D., Sneve, M. H., Espeseth, T., Endestad, T., van de Pavert, S. H. P., & Laeng, B. (2014). Pupil size signals mental effort deployed during multiple object tracking and predicts brain activity in the dorsal attention network and the locus coeruleus. Journal of Vision, 14(4), 1–20. doi:10.1167/14.4.1 PubMedCrossRefGoogle Scholar
  4. Alvarez, G. A., & Cavanagh, P. (2005). Independent resources for attentional tracking in the left and right visual hemifields. Psychological Science, 16, 637–643. doi:10.1111/j.1467-9280.2005.01587.x PubMedCrossRefGoogle Scholar
  5. Alvarez, G. A., & Franconeri, S. L. (2007). How many objects can you track?: Evidence for a resource-limited attentive tracking mechanism. Journal of Vision, 7(13), 1–10. doi:10.1167/7.13.14 CrossRefGoogle Scholar
  6. Alvarez, G. A., Horowitz, T. S., Arsenio, H. C., DiMase, J. S., & Wolfe, J. M. (2005). Do multielement visual tracking and visual search draw continuously on the same visual attention resources? Journal of Experimental Psychology: Human Perception and Performance, 31, 643–667. doi:10.1037/0096-1523.31.4.643 PubMedGoogle Scholar
  7. Alvarez, G. A., & Oliva, A. (2008). The representation of simple ensemble visual features outside the focus of attention. Psychological Science, 19, 392–398. doi:10.1111/j.1467-9280.2008.02098.x PubMedPubMedCentralCrossRefGoogle Scholar
  8. Alvarez, G. A., & Scholl, B. J. (2005). How does attention select and track spatially extended objects? New effects of attentional concentration and amplification. Journal of Experimental Psychology: General, 134, 461–476. doi:10.1037/0096-3445.134.4.461 CrossRefGoogle Scholar
  9. Awh, E., Anllo-Vento, L., & Hillyard, S. A. (2000). The role of spatial selective attention in working memory for locations: Evidence from event-related potentials. Journal of Cognitive Neuroscience, 12, 840–847. doi:10.1162/089892900562444 PubMedCrossRefGoogle Scholar
  10. Awh, E., & Jonides, J. (2001). Overlapping mechanisms of attention and spatial working memory. Trends in Cognitive Sciences, 5, 119–126. doi:10.1016/S1364-6613(00)01593-X PubMedCrossRefGoogle Scholar
  11. Awh, E., & Pashler, H. (2000). Evidence for split attentional foci. Journal of Experimental Psychology: Human Perception and Performance, 26, 834–846. doi:10.1037/0096-1523.26.2.834 PubMedGoogle Scholar
  12. Bae, G. Y., & Flombaum, J. I. (2012). Close encounters of the distracting kind: Identifying the cause of visual tracking errors. Attention, Perception & Psychophysics, 74, 703–715. doi:10.3758/s13414-011-0260-1 CrossRefGoogle Scholar
  13. Battelli, L., Cavanagh, P., Intriligator, J., Tramo, M. J., Hénaff, M. A., Michèl, F., & Barton, J. J. (2001). Unilateral right parietal damage leads to bilateral deficit for high-level motion. Neuron, 32, 985–995. doi:10.1016/S0896-6273(01)00536-0 PubMedCrossRefGoogle Scholar
  14. Bettencourt, K. C., & Somers, D. C. (2009). Effects of target enhancement and distractor suppression on multiple object tracking capacity. Journal of Vision, 9(7), 1–11. doi:10.1167/9.7.9 CrossRefGoogle Scholar
  15. Botterill, K., Allen, R., & McGeorge, P. (2011). Multiple-object tracking: The binding of spatial location and featural identity. Experimental Psychology, 58, 196–200. doi:10.1027/1618-3169/a000085 PubMedCrossRefGoogle Scholar
  16. Brockhoff, A., Papenmeier, F., Wolf, K., Pfeiffer, T., Jahn, G., & Huff, M. (2016). Viewpoint matters: Exploring the involvement of reference frames in multiple object tracking from a developmental perspective. Cognitive Development, 37, 1–8. doi:10.1016/j.cogdev.2015.10.004 CrossRefGoogle Scholar
  17. Carter, O. L., Burr, D. C., Pettigrew, J. D., Wallis, G. M., Hasler, F., & Vollenweider, F. X. (2005). Using psilocybin to investigate the relationship between attention, working memory, and the serotonin 1A and 2A receptors. Journal of Cognitive Neuroscience, 17, 1497–1508. doi:10.1162/089892905774597191 PubMedCrossRefGoogle Scholar
  18. Castiello, U., & Umiltà, C. (1992). Splitting focal attention. Journal of Experimental Psychology: Human Perception and Performance, 18, 837–848. doi:10.1037/0096-1523.18.3.837 PubMedGoogle Scholar
  19. Cavanagh, P., & Alvarez, G. A. (2005). Tracking multiple targets with multifocal attention. Trends in Cognitive Sciences, 9, 349–354. doi:10.1016/j.tics.2005.05.009 PubMedCrossRefGoogle Scholar
  20. Chen, W. Y., Howe, P. D., & Holcombe, A. O. (2013). Resource demands of object tracking and differential allocation of the resource. Attention, Perception & Psychophysics, 75, 710–725. doi:10.3758/s13414-013-0425-1 CrossRefGoogle Scholar
  21. Cohen, M. A., Alvarez, G. A., & Nakayama, K. (2011). Natural-scene perception requires attention. Psychological Science. doi:10.1177/0956797611419168 Google Scholar
  22. Cohen, M. A., Pinto, Y., Howe, P. D., & Horowitz, T. S. (2011). The what–where trade-off in multiple-identity tracking. Attention, Perception & Psychophysics, 73, 1422–1434. doi:10.3758/s13414-011-0089-7 CrossRefGoogle Scholar
  23. Colas, F., Flacher, F., Tanner, T., Bessiere, P., & Girard, B. (2009). Bayesian models of eye movement selection with retinotopic maps. Biological Cybernetics, 100, 203–214. doi:10.1007/s00422-009-0292-y PubMedCrossRefGoogle Scholar
  24. Coull, J. T., & Frith, C. D. (1998). Differential activation of right superior parietal cortex and intraparietal sulcus by spatial and nonspatial attention. NeuroImage, 8, 176–187. doi:10.1006/nimg.1998.0354 PubMedCrossRefGoogle Scholar
  25. Culham, J. C., Brandt, S. A., Cavanagh, P., Kanwisher, N. G., Dale, A. M., & Tootell, R. B. (1998). Cortical fMRI activation produced by attentive tracking of moving targets. Journal of Neurophysiology, 80, 2657–2670.PubMedGoogle Scholar
  26. Culham, J. C., Cavanagh, P., & Kanwisher, N. G. (2001). Attention response functions: Characterizing brain areas using fMRI activation during parametric variations of attentional load. Neuron, 32, 737–745. doi:10.1016/S0896-6273(01)00499-8 PubMedCrossRefGoogle Scholar
  27. d’Avossa, G., Shulman, G. L., Snyder, A. Z., & Corbetta, M. (2006). Attentional selection of moving objects by a serial process. Vision Research, 46, 3403–3412. doi:10.1016/j.visres.2006.04.018 PubMedCrossRefGoogle Scholar
  28. Delvenne, J. F. (2005). The capacity of visual short-term memory within and between hemifields. Cognition, 96, B79–B88. doi:10.1016/j.cognition.2004.12.007 PubMedCrossRefGoogle Scholar
  29. Deubel, H., Bridgeman, B., & Schneider, W. X. (1998). Immediate post-saccadic information mediates space constancy. Vision Research, 38, 3147–3159. doi:10.1016/S0042-6989(98)00048-0 PubMedCrossRefGoogle Scholar
  30. DeYoe, E. A., Carman, G. J., Bandettini, P., Glickman, S., Wieser, J., Cox, R., & Neitz, J. (1996). Mapping striate and extrastriate visual areas in human cerebral cortex. Proceedings of the National Academy of Sciences of the United States of America, 93, 2382–2386. doi:10.1073/pnas.93.6.2382 PubMedPubMedCentralCrossRefGoogle Scholar
  31. Doran, M. M., & Hoffman, J. E. (2010). The role of visual attention in multiple object tracking: Evidence from ERPs. Attention, Perception & Psychophysics, 72, 33–52. doi:10.3758/APP.72.1.33 CrossRefGoogle Scholar
  32. Doran, M. M., Hoffman, J. E., & Scholl, B. (2009). The role of eye fixations in concentration and amplification effects during multiple object tracking. Visual Cognition, 17, 574–597. doi:10.1080/13506280802117010 CrossRefGoogle Scholar
  33. Drew, T., Horowitz, T. S., Wolfe, J. M., & Vogel, E. K. (2011). Delineating the neural signatures of tracking spatial position and working memory during attentive tracking. The Journal of Neuroscience, 31, 659–668. doi:10.1523/JNEUROSCI.1339-10.2011 PubMedPubMedCentralCrossRefGoogle Scholar
  34. Drew, T., Horowitz, T. S., & Vogel, E. K. (2013). Swapping or dropping? Electrophysiological measures of difficulty during multiple object tracking. Cognition, 126, 213–223. doi:10.1016/j.cognition.2012.10.003 PubMedCrossRefGoogle Scholar
  35. Drew, T., McCollough, A. W., Horowitz, T. S., & Vogel, E. K. (2009). Attentional enhancement during multiple-object tracking. Psychonomic Bulletin & Review, 16, 411–417. doi:10.3758/PBR.16.2.411 CrossRefGoogle Scholar
  36. Drew, T., & Vogel, E. K. (2008). Neural measures of individual differences in selecting and tracking multiple moving objects. The Journal of Neuroscience, 28, 4183–4191. doi:10.1523/JNEUROSCI.0556-08.2008 PubMedPubMedCentralCrossRefGoogle Scholar
  37. Dye, M. W., & Bavelier, D. (2010). Differential development of visual attention skills in school-age children. Vision Research, 50, 452–459. doi:10.1016/j.visres.2009.10.010 PubMedCrossRefGoogle Scholar
  38. Egly, R., Driver, J., & Rafal, R. D. (1994). Shifting visual attention between objects and locations: Evidence from normal and parietal lesion subjects. Journal of Experimental Psychology: General, 123, 161. doi:10.1037/0096-3445.123.2.161 CrossRefGoogle Scholar
  39. Engel, S. A., Glover, G. H., & Wandell, B. A. (1997). Retinotopic organization in human visual cortex and the spatial precision of functional MRI. Cerebral Cortex, 7, 181–192. doi:10.1093/cercor/7.2.181 PubMedCrossRefGoogle Scholar
  40. Ericson, J. M., & Christensen, J. C. (2012). Reallocating attention during multiple object tracking. Attention, Perception & Psychophysics, 74, 831–840. doi:10.3758/s13414-012-0294-z CrossRefGoogle Scholar
  41. Ericson, J. M., Parr, S. A., Beck, M. R., & Wolshon, B. (2017). Compensating for failed attention while driving. Transportation Research Part F: Traffic Psychology and Behaviour, 45, 65–74. doi:10.1016/j.trf.2016.11.015 CrossRefGoogle Scholar
  42. Erlikhman, G., Keane, B. P., Mettler, E., Horowitz, T. S., & Kellman, P. J. (2013). Automatic feature-based grouping during multiple object tracking. Journal of Experimental Psychology: Human Perception and Performance, 39, 1625–1637. doi:10.1037/a0031750 PubMedPubMedCentralGoogle Scholar
  43. Evers, K., de-Wit, L., Van der Hallen, R., Haesen, B., Steyaert, J., Noens, I., & Wagemans, J. (2014). Reduced grouping interference in children with ASD: Evidence from a multiple object tracking task. Journal of Autism and Developmental Disorders, 44, 1779–1787. doi:10.1007/s10803-013-2031-4 PubMedCrossRefGoogle Scholar
  44. Fehd, H. M., & Seiffert, A. E. (2008). Eye movements during multiple object tracking: Where do participants look? Cognition, 108, 201–209. doi:10.1016/j.cognition.2007.11.008 PubMedCrossRefGoogle Scholar
  45. Fehd, H. M., & Seiffert, A. E. (2010). Looking at the center of the targets helps multiple object tracking. Journal of Vision, 10, 1–13. doi:10.1167/10.4.19 PubMedCrossRefGoogle Scholar
  46. Fencsik, D. E., Klieger, S. B., & Horowitz, T. S. (2007). The role of location and motion information in the tracking and recovery of moving objects. Perception & Psychophysics, 69, 567–77. doi:10.3758/BF03193914 CrossRefGoogle Scholar
  47. Feria, C. S. (2008). The distribution of attention within objects in multiple-object scenes: Prioritization by spatial probabilities and a center bias. Perception & Psychophysics, 70, 1185–1196. doi:10.3758/PP.70.7.1185 CrossRefGoogle Scholar
  48. Feria, C. S. (2010). Attentional prioritizations based on spatial probabilities can be maintained on multiple moving objects. Attention, Perception & Psychophysics, 72, 926–938. doi:10.3758/APP.72.4.926 CrossRefGoogle Scholar
  49. Feria, C. S. (2012). The effects of distractors in multiple object tracking are modulated by the similarity of distractor and target features. Perception, 41, 287–304. doi:10.1068/p7053 PubMedCrossRefGoogle Scholar
  50. Feria, C. S. (2013). Speed has an effect on multiple-object tracking independently of the number of close encounters between targets and distractors. Attention, Perception & Psychophysics, 75, 53–67. doi:10.3758/s13414-012-0369-x CrossRefGoogle Scholar
  51. Flombaum, J. I., Scholl, B. J., & Pylyshyn, Z. W. (2008). Attentional resources in visual tracking through occlusion: The high-beams effect. Cognition, 107, 904–931. doi:10.1016/j.cognition.2007.12.015 PubMedCrossRefGoogle Scholar
  52. Fougnie, D., & Marois, R. (2006). Distinct capacity limits for attention and working memory evidence from attentive tracking and visual working memory paradigms. Psychological Science, 17, 526–534. doi:10.1111/j.1467-9280.2006.01739.x PubMedCrossRefGoogle Scholar
  53. Fougnie, D., & Marois, R. (2009). Attentive tracking disrupts feature binding in visual working memory. Visual Cognition, 17, 48–66. doi:10.1080/13506280802281337 PubMedPubMedCentralCrossRefGoogle Scholar
  54. Franconeri, S. L., Alvarez, G. A., & Enns, J. T. (2007). How many locations can be selected at once? Journal of Experimental Psychology: Human Perception and Performance, 33, 1003–1012. doi:10.1037/0096-1523.33.5.1003 PubMedGoogle Scholar
  55. Franconeri, S. L., Jonathan, S. V., & Scimeca, J. M. (2010). Tracking multiple objects is limited only by object spacing, not by speed, time, or capacity. Psychological Science, 21, 920–925. doi:10.1177/0956797610373935 PubMedCrossRefGoogle Scholar
  56. Franconeri, S. L., Lin, J. Y., Pylyshyn, Z. W., Fisher, B., & Enns, J. T. (2008). Evidence against a speed limit in multiple-object tracking. Psychonomic Bulletin & Review, 15, 802–808. doi:10.3758/PBR.15.4.802 CrossRefGoogle Scholar
  57. Green, C. S., & Bavelier, D. (2006). Enumeration versus multiple object tracking: The case of action video game players. Cognition, 101, 217–245. doi:10.1016/j.cognition.2005.10.004 PubMedCrossRefGoogle Scholar
  58. Griffith, E. M., Pennington, B. F., Wehner, E. A., & Rogers, S. J. (1999). Executive functions in young children with autism. Child Development, 70, 817–832. doi:10.1111/1467-8624.00059 PubMedCrossRefGoogle Scholar
  59. Holcombe, A. O., & Chen, W. Y. (2012). Exhausting attentional tracking resources with a single fast-moving object. Cognition, 123, 218–228. doi:10.1016/j.cognition.2011.10.003 PubMedCrossRefGoogle Scholar
  60. Holcombe, A. O., & Chen, W. Y. (2013). Splitting attention reduces temporal resolution from 7 Hz for tracking one object to <3 Hz when tracking three. Journal of Vision, 13, 12–12. doi:10.1167/13.1.12 PubMedCrossRefGoogle Scholar
  61. Holcombe, A. O., Chen, W. Y., & Howe, P. D. (2014). Object tracking: Absence of long-range spatial interference supports resource theories. Journal of Vision, 14(6), 1–24. doi:10.1167/14.6.1 PubMedCrossRefGoogle Scholar
  62. Hopf, J.-M., Boehler, C. N., Luck, S. J., Tsotsos, J. K., Heinze, H.-J., & Schoenfeld, M. A. (2006). Direct neurophysiological evidence for spatial suppression surrounding the focus of attention in vision. Proceedings of the National Academy of Sciences, 103, 1053–1058. doi:10.1073/pnas.0507746103 CrossRefGoogle Scholar
  63. Horowitz, T. S., Birnkrant, R. S., Fencsik, D. E., Tran, L., & Wolfe, J. M. (2006). How do we track invisible objects? Psychonomic Bulletin & Review, 13, 516–523. doi:10.3758/BF03193879 CrossRefGoogle Scholar
  64. Horowitz, T. S., & Cohen, M. A. (2010). Direction information in multiple object tracking is limited by a graded resource. Attention, Perception & Psychophysics, 72, 1765–1775. doi:10.3758/APP.72.7.1765 CrossRefGoogle Scholar
  65. Horowitz, T. S., Klieger, S. B., Fencsik, D. E., Yang, K. K., Alvarez, G. A., & Wolfe, J. M. (2007). Tracking unique objects. Perception & Psychophysics, 69, 172–184. doi:10.3758/BF03193740 CrossRefGoogle Scholar
  66. Horowitz, T. S., & Kuzmova, Y. (2011). Can we track holes? Vision Research, 51, 1013–1021. doi:10.1016/j.visres.2011.02.009 PubMedPubMedCentralCrossRefGoogle Scholar
  67. Howard, C. J., & Holcombe, A. O. (2008). Tracking the changing features of multiple objects: Progressively poorer perceptual precision and progressively greater perceptual lag. Vision Research, 48, 1164–1180. doi:10.1016/j.visres.2008.01.023 PubMedCrossRefGoogle Scholar
  68. Howard, C. J., Masom, D., & Holcombe, A. O. (2011). Position representations lag behind targets in multiple object tracking. Vision Research, 51, 1907–19. doi:10.1016/j.visres.2011.07.001 PubMedCrossRefGoogle Scholar
  69. Howe, P. D., Cohen, M. A., Pinto, Y., & Horowitz, T. S. (2010). Distinguishing between parallel and serial accounts of multiple object tracking. Journal of Vision, 10(8), 1–13. doi:10.1167/10.8.11 CrossRefGoogle Scholar
  70. Howe, P. D., Drew, T., Pinto, Y., & Horowitz, T. S. (2011). Remapping attention in multiple object tracking. Vision Research, 51, 489–495. doi:10.1016/j.visres.2011.01.001 PubMedPubMedCentralCrossRefGoogle Scholar
  71. Howe, P. D., & Holcombe, A. O. (2012). Motion information is sometimes used as an aid to the visual tracking of objects. Journal of Vision, 12(13), 1–10. doi:10.1167/12.13.10 CrossRefGoogle Scholar
  72. Howe, P. D., Holcombe, A. O., Lapierre, M. D., & Cropper, S. J. (2013). Visually tracking and localizing expanding and contracting objects. Perception, 42, 1281–1300. doi:10.1068/p7635 PubMedCrossRefGoogle Scholar
  73. Howe, P. D., Horowitz, T. S., Morocz, I. A., Wolfe, J., & Livingstone, M. S. (2009). Using fMRI to distinguish components of the multiple object tracking task. Journal of Vision, 9(4), 1–11. doi:10.1167/9.4.10 PubMedCrossRefGoogle Scholar
  74. Howe, P. D., Incledon, N. C., & Little, D. R. (2012). Can attention be confined to just part of a moving object? Revisiting target-distractor merging in multiple object tracking. PLoS ONE, 7, e41491. doi:10.1371/journal.pone.0041491 PubMedPubMedCentralCrossRefGoogle Scholar
  75. Howe, P. D., Pinto, Y., & Horowitz, T. S. (2010). The coordinate systems used in visual tracking. Vision Research, 50, 2375–2380. doi:10.1016/j.visres.2010.09.026 PubMedPubMedCentralCrossRefGoogle Scholar
  76. Huang, L., Mo, L., & Li, Y. (2012). Measuring the interrelations among multiple paradigms of visual attention: An individual differences approach. Journal of Experimental Psychology: Human Perception and Performance, 38, 414–428. doi:10.1037/a0026314 PubMedGoogle Scholar
  77. Hudson, C., Howe, P. D., & Little, D. R. (2012). Hemifield effects in multiple identity tracking. PLoS ONE, 7, e43796. doi:10.1371/journal.pone.0043796 PubMedPubMedCentralCrossRefGoogle Scholar
  78. Huff, M., Jahn, G., & Schwan, S. (2009). Tracking multiple objects across abrupt viewpoint changes. Visual Cognition, 17, 297–306. doi:10.1080/13506280802061838 CrossRefGoogle Scholar
  79. Huff, M., Meyerhoff, H. S., Papenmeier, F., & Jahn, G. (2010). Spatial updating of dynamic scenes: Tracking multiple invisible objects across viewpoint changes. Attention, Perception & Psychophysics, 72, 628–636. doi:10.3758/APP.72.3.628 CrossRefGoogle Scholar
  80. Huff, M., & Papenmeier, F. (2013). It is time to integrate: The temporal dynamics of object motion and texture motion integration in multiple object tracking. Vision Research, 76, 25–30. doi:10.1016/j.visres.2012.10.001 PubMedCrossRefGoogle Scholar
  81. Huff, M., Papenmeier, F., Jahn, G., & Hesse, F. (2010). Eye movements across viewpoint changes in multiple object tracking. Visual Cognition, 18, 1368–1391. doi:10.1080/13506285.2010.495878 CrossRefGoogle Scholar
  82. Huff, M., Papenmeier, F., & Zacks, J. M. (2012). Visual target detection is impaired at event boundaries. Visual Cognition, 20, 848–864. doi:10.1080/13506285.2012.705359 CrossRefGoogle Scholar
  83. Hulleman, J. (2005). The mathematics of multiple object tracking: From proportions correct to number of objects tracked. Vision Research, 45, 2298–2309. doi:10.1016/j.visres.2005.02.016 PubMedCrossRefGoogle Scholar
  84. Ilg, U. J. (2008). The role of areas MT and MST in coding of visual motion underlying the execution of smooth pursuit. Vision Research, 48, 2062–2069. doi:10.1016/j.visres.2008.04.015 PubMedCrossRefGoogle Scholar
  85. Intriligator, J., & Cavanagh, P. (2001). The spatial resolution of visual attention. Cognitive Psychology, 43, 171–216. doi:10.1006/cogp.2001.0755 PubMedCrossRefGoogle Scholar
  86. Iordanescu, L., Grabowecky, M., & Suzuki, S. (2009). Demand-based dynamic distribution of attention and monitoring of velocities during multiple-object tracking. Journal of Vision, 9. doi:10.1167/9.4.1
  87. Jahn, G., Papenmeier, F., Meyerhoff, H. S., & Huff, M. (2012). Spatial reference in multiple object tracking. Experimental Psychology, 59, 163–173. doi:10.1027/1618-3169/a000139 PubMedCrossRefGoogle Scholar
  88. Jahn, G., Wendt, J., Lotze, M., Papenmeier, F., & Huff, M. (2012). Brain activation during spatial updating and attentive tracking of moving targets. Brain and Cognition, 78, 105–113. doi:10.1016/j.bandc.2011.12.001 PubMedCrossRefGoogle Scholar
  89. Jardine, N. L., & Seiffert, A. E. (2011). Tracking objects that move where they are headed. Attention, Perception & Psychophysics, 73, 2168–2179. doi:10.3758/s13414-011-0169-8 CrossRefGoogle Scholar
  90. Jovicich, J., Peters, R. J., Koch, C., Braun, J., Chang, L., & Ernst, T. (2001). Brain areas specific for attentional load in a motion-tracking task. Journal of Cognitive Neuroscience, 13, 1048–1058. doi:10.1162/089892901753294347 PubMedCrossRefGoogle Scholar
  91. Keane, B. P., Mettler, E., Tsoi, V., & Kellman, P. J. (2011). Attentional signatures of perception: Multiple object tracking reveals the automaticity of contour interpolation. Journal of Experimental Psychology: Human Perception and Performance, 37, 685. doi:10.1037/a0020674 PubMedGoogle Scholar
  92. Keane, B. P., & Pylyshyn, Z. W. (2006). Is motion extrapolation employed in multiple object tracking? Tracking as a low-level, non-predictive function. Cognitive Psychology, 52, 346–368. doi:10.1016/j.cogpsych.2005.12.001 PubMedCrossRefGoogle Scholar
  93. Koldewyn, K., Weigelt, S., Kanwisher, N., & Jiang, Y. (2013). Multiple object tracking in autism spectrum disorders. Journal of Autism and Developmental Disorders, 43, 1394–1405. doi:10.1007/s10803-012-1694-6 PubMedPubMedCentralCrossRefGoogle Scholar
  94. Kramer, A. F., & Hahn, S. (1995). Splitting the beam: Distribution of attention over noncontiguous regions of the visual field. Psychological Science, 381–386. doi:10.1111/j.1467-9280.1995.tb00530.x
  95. Kunar, M. A., Carter, R., Cohen, M., & Horowitz, T. S. (2008). Telephone conversation impairs sustained visual attention via a central bottleneck. Psychonomic Bulletin & Review, 15, 1135–1140. doi:10.3758/PBR.15.6.1135 CrossRefGoogle Scholar
  96. Lennie, P. (1998). Single units and visual cortical organization. Perception, 27, 889–935. doi:10.1068/p270889 PubMedCrossRefGoogle Scholar
  97. Li, J., Oksama, L., & Hyönä, J. (2016). How facial attractiveness affects sustained attention. Scandinavian Journal of Psychology, 57(5), 383–392. doi:10.1111/sjop.12304 PubMedCrossRefGoogle Scholar
  98. Li, L., & Warren, W. H. (2000). Perception of heading during rotation: Sufficiency of dense motion parallax and reference objects. Vision Research, 40, 3873–3894. doi:10.1016/S0042-6989(00)00196-6 PubMedCrossRefGoogle Scholar
  99. Liu, G., Austen, E. L., Booth, K. S., Fisher, B. D., Argue, R., Rempel, M. I., & Enns, J. T. (2005). Multiple-object tracking is based on scene, not retinal, coordinates. Journal of Experimental Psychology: Human Perception and Performance, 31, 235–247. doi:10.1037/0096-1523.31.2.235 PubMedGoogle Scholar
  100. Liu, C. H., & Chen, W. (2012). Beauty is better pursued: Effects of attractiveness in multiple-face tracking. The Quarterly Journal of Experimental Psychology, 65, 553–564. doi:10.1080/17470218.2011.624186 PubMedCrossRefGoogle Scholar
  101. Liverence, B. M., & Scholl, B. J. (2011). Selective attention warps spatial representation parallel but opposing effects on attended versus inhibited objects. Psychological Science, 22, 1600–1608. doi:10.1177/0956797611422543 PubMedCrossRefGoogle Scholar
  102. Lochner, M. J., & Trick, L. M. (2014). Multiple-object tracking while driving: The multiple-vehicle tracking task. Attention, Perception, & Psychophysics. doi:10.3758/s13414-014-0694-3 Google Scholar
  103. Luck, S. J. (1995). Multiple mechanisms of visual–spatial attention: Recent evidence from human electrophysiology. Behavioural Brain Research, 71, 113–123. doi:10.1016/0166-4328(95)00041-0 PubMedCrossRefGoogle Scholar
  104. Luck, S. J., Hillyard, S. A., Mouloua, M., Woldorff, M. G., Clark, V. P., & Hawkins, H. L. (1994). Effects of spatial cuing on luminance detectability: Psychophysical and electrophysiological evidence for early selection. Journal of Experimental Psychology: Human Perception & Performance, 20, 887–904. doi:10.1037/0096-1523.20.4.887 Google Scholar
  105. Lukavský, J. (2013). Eye movements in repeated multiple object tracking. Journal of Vision, 13(7), 1–16. doi:10.1167/13.7.9 CrossRefGoogle Scholar
  106. Lukavský, J., & Děchtěrenko, F. (2016). Gaze position lagging behind scene content in multiple object tracking: Evidence from forward and backward presentations. Attention, Perception & Psychophysics, 78(8), 2456–2468. doi:10.3758/s13414-016-1178-4 CrossRefGoogle Scholar
  107. Luu, T., & Howe, P. D. (2015). Extrapolation occurs in multiple object tracking when eye movements are controlled. Attention, Perception & Psychophysics, 77, 1919–1929. doi:10.3758/s13414-015-0891-8 CrossRefGoogle Scholar
  108. Ma, Z., & Flombaum, J. I. (2013). Off to a bad start: Uncertainty about the number of targets at the onset of multiple object tracking. Journal of Experimental Psychology: Human Perception and Performance, 39, 1421–1432. doi:10.1037/a0031353 PubMedGoogle Scholar
  109. Makovski, T., & Jiang, Y. V. (2009a). Feature binding in attentive tracking of distinct objects. Visual Cognition, 17, 180–194. doi:10.1080/13506280802211334 PubMedPubMedCentralCrossRefGoogle Scholar
  110. Makovski, T., & Jiang, Y. V. (2009b). The role of visual working memory in attentive tracking of unique objects. Journal of Experimental Psychology: Human Perception and Performance, 35, 1687–1697. doi:10.1037/a0016453 PubMedPubMedCentralGoogle Scholar
  111. McMains, S. A., & Somers, D. C. (2004). Multiple spotlights of attentional selection in human visual cortex. Neuron, 42, 677–686. doi:10.1016/S0896-6273(04)00263-6 PubMedCrossRefGoogle Scholar
  112. Memmert, D., Simons, D., & Grimme, T. (2009). The relationship between visual attention and expertise in sports. Psychology of Sport and Exercise, 10, 146–151. doi:10.1016/j.psychsport.2008.06.002 CrossRefGoogle Scholar
  113. Meyerhoff, H. S., Huff, M., Papenmeier, F., Jahn, G., & Schwan, S. (2011). Continuous visual cues trigger automatic spatial target updating in dynamic scenes. Cognition, 121, 73–82. doi:10.1016/j.cognition.2011.06.001 PubMedCrossRefGoogle Scholar
  114. Meyerhoff, H. S., Papenmeier, F., Jahn, G., & Huff, M. (2013). A single unexpected change in target-but not distractor motion impairs multiple object tracking. i-Perception, 4, 81–83. doi:10.1068/i0567sas PubMedPubMedCentralCrossRefGoogle Scholar
  115. Meyerhoff, H. S., Papenmeier, F., Jahn, G., & Huff, M. (2015). Distractor locations influence multiple object tracking beyond interobject spacing: Evidence from equidistant distractor displacements. Experimental Psychology, 62, 170–180. doi:10.1027/1618-3169/a000283 PubMedCrossRefGoogle Scholar
  116. Meyerhoff, H. S., Papenmeier, F., Jahn, G., & Huff, M. (2016). Not FLEXible enough: Exploring the temporal dynamics of attentional reallocations with the multiple object tracking paradigm. Journal of Experimental Psychology: Human Perception and Performance, 42, 776–787. doi:10.1037/xhp0000187 PubMedGoogle Scholar
  117. Meyerhoff, H. S., Papenmeier, F., & Huff, M. (2013). Object-based integration of motion information during attentive tracking. Perception, 42, 119–121. doi:10.1068/p7273 PubMedCrossRefGoogle Scholar
  118. Müller, M. M., Malinowski, P., Gruber, T., & Hillyard, S. A. (2003). Sustained division of the attentional spotlight. Nature, 424, 309–312. doi:10.1038/nature01812 PubMedCrossRefGoogle Scholar
  119. Müller, N. G., Mollenhauer, M., Rösler, A., & Kleinschmidt, A. (2005). The attentional field has a Mexican hat distribution. Vision Research, 45, 1129–1137. doi:10.1016/j.visres.2004.11.003 PubMedCrossRefGoogle Scholar
  120. O’Hearn, K., Hoffman, J. E., & Landau, B. (2010). Developmental profiles for multiple object tracking and spatial memory: Typically developing preschoolers and people with Williams syndrome. Developmental Science, 13, 430–440. doi:10.1111/j.1467-7687.2009.00893.x PubMedPubMedCentralCrossRefGoogle Scholar
  121. O’Hearn, K., Landau, B., & Hoffman, J. E. (2005). Multiple object tracking in people with Williams syndrome and in normally developing children. Psychological Science, 16, 905–912. doi:10.1111/j.1467-9280.2005.01635.x PubMedPubMedCentralCrossRefGoogle Scholar
  122. Ogawa, H., Watanabe, K., & Yagi, A. (2009). Contextual cueing in multiple object tracking. Visual Cognition, 17, 1244–1258. doi:10.1080/13506280802457176 CrossRefGoogle Scholar
  123. Oksama, L., & Hyönä, J. (2004). Is multiple object tracking carried out automatically by an early vision mechanism independent of higherorder cognition? An individual difference approach. Visual Cognition, 11, 631–671. doi:10.1080/13506280344000473 CrossRefGoogle Scholar
  124. Oksama, L., & Hyönä, J. (2008). Dynamic binding of identity and location information: A serial model of multiple identity tracking. Cognitive Psychology, 56, 237–283. doi:10.1016/j.cogpsych.2007.03.001 PubMedCrossRefGoogle Scholar
  125. Oksama, L., & Hyönä, J. (2016). Position tracking and identity tracking are separate systems: Evidence from eye movements. Cognition, 146, 393–409. doi:10.1016/j.cognition.2015.10.016 PubMedCrossRefGoogle Scholar
  126. Papenmeier, F., Meyerhoff, H.S., Brockhoff, A., Jahn, G., & Huff, M. (in press). Upside-down: Perceived space affects object-based attention. Journal of Experimental Psychology: Human Perception and Performance. doi:10.1037/xhp0000421
  127. Papenmeier, F., Meyerhoff, H. S., Jahn, G., & Huff, M. (2014). Tracking by location and features: Object correspondence across spatiotemporal discontinuities during multiple object tracking. Journal of Experimental Psychology: Human Perception and Performance, 40, 159–171. doi:10.1037/a0033117 PubMedGoogle Scholar
  128. Pinto, Y., Howe, P. D., Cohen, M. A., & Horowitz, T. S. (2010). The more often you see an object, the easier it becomes to track it. Journal of Vision, 10, 1–15. doi:10.1167/10.10.4 CrossRefGoogle Scholar
  129. Poirier, M., Martin, J. S., Gaigg, S. B., & Bowler, D. M. (2011). Short-term memory in autism spectrum disorder. Journal of Abnormal Psychology, 120, 247–252. doi:10.1037/a0022298 PubMedCrossRefGoogle Scholar
  130. Posner, M. I. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology, 32, 3–25. doi:10.1080/00335558008248231 PubMedCrossRefGoogle Scholar
  131. Posner, M. I., Snyder, C. R., & Davidson, B. J. (1980). Attention and the detection of signals. Journal of Experimental Psychology: General, 109, 160. doi:10.1037/0096-3445.109.2.160 CrossRefGoogle Scholar
  132. Pylyshyn, Z. W. (1989). The role of location indexes in spatial perception: A sketch of the FINST spatial-index model. Cognition, 32, 65–97. doi:10.1016/0010-0277(89)90014-0 PubMedCrossRefGoogle Scholar
  133. Pylyshyn, Z. W. (1994). Some primitive mechanisms of spatial attention. Cognition, 50, 363–384. doi:10.1016/0010-0277(94)90036-1 PubMedCrossRefGoogle Scholar
  134. Pylyshyn, Z. W. (2001). Visual indexes, preconceptual objects, and situated vision. Cognition, 80, 127–158. doi:10.1016/S0010-0277(00)00156-6 PubMedCrossRefGoogle Scholar
  135. Pylyshyn, Z. W. (2004). Some puzzling findings in multiple object tracking: I. Tracking without keeping track of object identities. Visual Cognition, 11, 801–822. doi:10.1080/13506280344000518 CrossRefGoogle Scholar
  136. Pylyshyn, Z. W. (2006). Some puzzling findings in multiple object tracking (MOT): II. Inhibition of moving nontargets. Visual Cognition, 14, 175–198. doi:10.1080/13506280544000200 CrossRefGoogle Scholar
  137. Pylyshyn, Z. W. (2007). Things and places: How the mind connects with the world. Cambridge: MIT Press.Google Scholar
  138. Pylyshyn, Z. W., & Annan, V. (2006). Dynamics of target selection in multiple object tracking (MOT). Spatial Vision, 19, 485–504. doi:10.1163/156856806779194017 PubMedCrossRefGoogle Scholar
  139. Pylyshyn, Z. W., Burkell, J., Fisher, B., Sears, C., Schmidt, W., & Trick, L. (1994). Multiple parallel access in visual attention. Canadian Journal of Experimental Psychology, 48, 260–283. doi:10.1037/1196-1961.48.2.260 PubMedCrossRefGoogle Scholar
  140. Pylyshyn, Z. W., Haladjian, H. H., King, C. E., & Reilly, J. E. (2008). Selective nontarget inhibition in multiple object tracking. Visual Cognition, 16, 1011–1021. doi:10.1080/13506280802247486 CrossRefGoogle Scholar
  141. Pylyshyn, Z. W., & Storm, R. W. (1988). Tracking multiple independent targets: Evidence for a parallel tracking mechanism. Spatial Vision, 3, 179–197. doi:10.1163/156856888X00122 PubMedCrossRefGoogle Scholar
  142. Raymond, J. E., Shapiro, K. L., & Rose, D. J. (1984). Optokinetic backgrounds affect perceived velocity during ocular tracking. Perception & Psychophysics, 36, 221–224. doi:10.3758/BF03206362 CrossRefGoogle Scholar
  143. Rehman, A. U., Kihara, K., Matsumoto, A., & Ohtsuka, S. (2015). Attentive tracking of moving objects in real 3D space. Vision Research, 109, 1–10. doi:10.1016/j.visres.2015.02.004 CrossRefGoogle Scholar
  144. Ren, D., Chen, W., Liu, C. H., & Fu, X. (2009). Identity processing in multiple-face tracking. Journal of Vision, 9(5), 1–15. doi:10.1167/9.5.18 PubMedCrossRefGoogle Scholar
  145. Richardson, D. C., & Kirkham, N. Z. (2004). Multimodal events and moving locations: Eye movements of adults and 6-month-olds reveal dynamic spatial indexing. Journal of Experimental Psychology: General, 133, 46–62. doi:10.1037/0096-3445.133.1.46 CrossRefGoogle Scholar
  146. Scholl, B. J. (2001). Objects and attention: The state of the art. Cognition, 80, 1–46. doi:10.1016/S0010-0277(00)00152-9 PubMedCrossRefGoogle Scholar
  147. Scholl, B. J. (2009). What have we learned about attention from multiple object tracking (and vice versa)? In D. Dedrick & L. Trick (Eds.), Computation, cognition, and Pylyshyn (pp. 49–78). Cambridge: MIT Press.Google Scholar
  148. Scholl, B. J., & Pylyshyn, Z. W. (1999). Tracking multiple items through occlusion: Clues to visual objecthood. Cognitive Psychology, 38, 259–290. doi:10.1006/cogp.1998.0698 PubMedCrossRefGoogle Scholar
  149. Scholl, B. J., Pylyshyn, Z. W., & Feldman, J. (2001). What is a visual object? Evidence from target merging in multiple object tracking. Cognition, 80, 159–177. doi:10.1016/S0010-0277(00)00157-8 PubMedCrossRefGoogle Scholar
  150. Scimeca, J. M., & Franconeri, S. L. (2015). Selecting and tracking multiple objects. Wiley Interdisciplinary Reviews: Cognitive Science, 6, 109–118. doi:10.1002/wcs.1328 PubMedGoogle Scholar
  151. Sears, C. R., & Pylyshyn, Z. W. (2000). Multiple object tracking and attentional processing. Canadian Journal of Experimental Psychology, 54, 1–14. doi:10.1037/h0087326 PubMedCrossRefGoogle Scholar
  152. Sekuler, R., McLaughlin, C., & Yotsumoto, Y. (2008). Age-related changes in attentional tracking of multiple moving objects. Perception, 37, 867–876. doi:10.1068/p5923 PubMedCrossRefGoogle Scholar
  153. Shim, W. M., Alvarez, G. A., & Jiang, Y. V. (2008). Spatial separation between targets constrains maintenance of attention on multiple objects. Psychonomic Bulletin & Review, 15, 390–397. doi:10.3758/PBR.15.2.390 CrossRefGoogle Scholar
  154. Smyth, M. M., & Scholey, K. A. (1994). Interference in immediate spatial memory. Memory & Cognition, 22, 1–13. doi:10.3758/BF03202756 CrossRefGoogle Scholar
  155. St. Clair, R., Huff, M., & Seiffert, A. E. (2010). Conflicting motion information impairs multiple object tracking. Journal of Vision, 10, 1–13. doi:10.1167/10.4.18 PubMedCrossRefGoogle Scholar
  156. Sternshein, H., Agam, Y., & Sekuler, R. (2011). EEG correlates of attentional load during multiple object tracking. PLoS ONE, 6(7), e22660.PubMedPubMedCentralCrossRefGoogle Scholar
  157. Störmer, V. S., Alvarez, G. A., & Cavanagh, P. (2014). Within-hemifield competition in early visual areas limits the ability to track multiple objects with attention. The Journal of Neuroscience, 34, 11526–11533. doi:10.1523/JNEUROSCI.0980-14.2014 PubMedPubMedCentralCrossRefGoogle Scholar
  158. Störmer, V. S., Li, S.-C., Heekeren, H. R., & Lindenberger, U. (2011). Feature-based interference from unattended visual field during attentional tracking in younger and older adults. Journal of Vision, 11, 1–12. doi:10.1167/11.2.1 PubMedCrossRefGoogle Scholar
  159. Störmer, V. S., Winther, G. N., Li, S. C., & Andersen, S. K. (2013). Sustained multifocal attentional enhancement of stimulus processing in early visual areas predicts tracking performance. The Journal of Neuroscience, 33, 5346–5351. doi:10.1523/JNEUROSCI.4015-12.2013 PubMedCrossRefGoogle Scholar
  160. Thomas, L. E., & Seiffert, A. E. (2010). Self-motion impairs multiple-object tracking. Cognition, 117, 80–86. doi:10.1016/j.cognition.2010.07.002 PubMedCrossRefGoogle Scholar
  161. Thomas, L. E., & Seiffert, A. E. (2011). How many objects are you worth? Quantification of the self-motion load on multiple object tracking. Frontiers in Psychology, 2(245), 1–5. doi:10.3389/fpsyg.2011.00245 Google Scholar
  162. Thornton, I. M., Bülthoff, H. H., Horowitz, T. S., Rynning, A., & Lee, S. W. (2014). Interactive multiple object tracking (iMOT). PLoS ONE, 9, e86974. doi:10.1371/journal.pone.0086974 PubMedPubMedCentralCrossRefGoogle Scholar
  163. Thornton, I. M., & Horowitz, T. S. (2015). Does action disrupt multiple object tracking (MOT)? Psihologija, 48, 289–301. doi:10.2298/PSI1503289T CrossRefGoogle Scholar
  164. Tombu, M., & Seiffert, A. E. (2008). Attentional costs in multiple-object tracking. Cognition, 108, 1–25. doi:10.1016/j.cognition.2007.12.014 PubMedPubMedCentralCrossRefGoogle Scholar
  165. Tombu, M., & Seiffert, A. E. (2011). Tracking planets and moons: Mechanisms of object tracking revealed with a new paradigm. Attention, Perception & Psychophysics, 73, 738–750. doi:10.3758/s13414-010-0060-z CrossRefGoogle Scholar
  166. Trick, L. M., Guindon, J., & Vallis, L. A. (2006). Sequential tapping interferes selectively with multiple-object tracking: Do finger-tapping and tracking share a common resource? The Quarterly Journal of Experimental Psychology, 59, 1188–1195. doi:10.1080/17470210600673990 PubMedCrossRefGoogle Scholar
  167. Trick, L. M., Perl, T., & Sethi, N. (2005). Age-related differences in multiple-object tracking. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 60, 102–P105. doi:10.1093/geronb/60.2.P102 CrossRefGoogle Scholar
  168. Van der Hallen, R., Evers, K., de-Wit, L., Steyaert, J., Noens, I., & Wagemans, J. (2015). Multiple object tracking reveals object-based grouping interference in children with ASD. Journal of Autism and Developmental Disorders. doi:10.1007/s10803-015-2463-0 PubMedGoogle Scholar
  169. Van Essen, D. C., Lewis, J. W., Drury, H. A., Hadjikhani, N., Tootell, R. B., Bakircioglu, M., & Miller, M. I. (2001). Mapping visual cortex in monkeys and humans using surface-based atlases. Vision Research, 41, 1359–1378. doi:10.1016/S0042-6989(01)00045-1 PubMedCrossRefGoogle Scholar
  170. van Marle, K., & Scholl, B. J. (2003). Attentive tracking of objects versus substances. Psychological Science, 14, 498–504. doi:10.1111/1467-9280.03451
  171. Vishwanath, D., & Kowler, E. (2003). Localization of shapes: Eye movements and perception compared. Vision Research, 43, 1637–1653. doi:10.1016/S0042-6989(03)00168-8 PubMedCrossRefGoogle Scholar
  172. Viswanathan, L., & Mingolla, E. (2002). Dynamics of attention in depth: Evidence from multi-element tracking. Perception, 31, 1415–1437. doi:10.1068/p3432 PubMedCrossRefGoogle Scholar
  173. Vogel, E. K., & Machizawa, M. G. (2004). Neural activity predicts individual differences in visual working memory capacity. Nature, 428, 748–751. doi:10.1038/nature02447 PubMedCrossRefGoogle Scholar
  174. Vogel, E. K., McCollough, A. W., & Machizawa, M. G. (2005). Neural measures reveal individual differences in controlling access to working memory. Nature, 438, 500–503. doi:10.1038/nature04171 PubMedCrossRefGoogle Scholar
  175. Vul, E., Frank, M., Alvarez, G. A., & Tenenbaum, J. B. (2009, February 26–March 3). Statistical decision theory and the allocation of cognitive resources in multiple object tracking. Presentation at the Computational and Systems Neuroscience Meeting, Salt Lake City, UT.Google Scholar
  176. Wang, R. F., & Simons, D. J. (1999). Active and passive scene recognition across views. Cognition, 70, 191–210. doi:10.1016/S0010-0277(99)00012-8 PubMedCrossRefGoogle Scholar
  177. Wolfe, J. M., Place, S. S., & Horowitz, T. S. (2007). Multiple object juggling: Changing what is tracked during extended multiple object tracking. Psychonomic Bulletin & Review, 14, 344–349. doi:10.3758/BF03194075 CrossRefGoogle Scholar
  178. Woodman, G. F., & Luck, S. J. (2003). Serial deployment of attention during visual search. Journal of Experimental Psychology: Human Perception and Performance, 29, 121–138. doi:10.1037/0096-1523.29.1.121 PubMedGoogle Scholar
  179. Yantis, S. (1992). Multielement visual tracking: Attention and perceptual organization. Cognitive Psychology, 24, 295–340. doi:10.1016/0010-0285(92)90010-y PubMedCrossRefGoogle Scholar
  180. Zelinsky, G. J., & Neider, M. B. (2008). An eye movement analysis of multiple object tracking in a realistic environment. Visual Cognition, 16, 553–566. doi:10.1080/13506280802000752 CrossRefGoogle Scholar
  181. Zelinsky, G. J., & Todor, A. (2010). The role of “rescue saccades” in tracking objects through occlusions. Journal of Vision, 10. doi:10.1167/10.14.29
  182. Zhang, W., & Luck, S. J. (2008). Discrete, fixed-resolution representations in visual working memory. Nature, 453, 233–235. doi:10.1038/nature06860 PubMedPubMedCentralCrossRefGoogle Scholar
  183. Zhang, H., Xuan, Y., Fu, X., & Pylyshyn, Z. W. (2010). Do objects in working memory compete with objects in perception? Visual Cognition, 18, 617–640. doi:10.1080/13506280903211142 CrossRefGoogle Scholar
  184. Zhao, L., Gao, Q., Ye, Y., Zhou, J., Shui, R., & Shen, M. (2014). The role of spatial configuration in multiple identity tracking. PLoS ONE, 9, e93835. doi:10.1371/journal.pone.0093835 PubMedPubMedCentralCrossRefGoogle Scholar
  185. Zhong, S. H., Ma, Z., Wilson, C., Liu, Y., & Flombaum, J. I. (2014). Why do people appear not to extrapolate trajectories during multiple object tracking? A computational investigation. Journal of Vision, 14, 12–12. doi:10.1167/14.12.12 PubMedPubMedCentralCrossRefGoogle Scholar
  186. Zhou, K., Luo, H., Zhou, T., Zhuo, Y., & Chen, L. (2010). Topological change disturbs object continuity in attentive tracking. Proceedings of the National Academy of Sciences, 107, 21920–21924. doi:10.1073/pnas.1010919108 CrossRefGoogle Scholar

Copyright information

© The Psychonomic Society, Inc. 2017

Authors and Affiliations

  • Hauke S. Meyerhoff
    • 1
  • Frank Papenmeier
    • 2
  • Markus Huff
    • 2
  1. 1.Leibniz-Institut für WissensmedienTübingenGermany
  2. 2.Department of PsychologyUniversity of TübingenTübingenGermany

Personalised recommendations