Attention, Perception, & Psychophysics

, Volume 79, Issue 5, pp 1524–1534 | Cite as

Self-relevance effects and label choice: Strong variations in label-matching performance due to non-self-relevant factors

Article

Abstract

Merely associating one’s self with a stimulus may be enough to enhance performance in a label-matching paradigm (Sui, He, & Humphreys, 2012), implying prioritized processing of self-relevant stimuli. For instance, labeling a square as SELF and a circle as OTHER yields speeded performance when verifying square-SELF compared with circle-OTHER label matches. The precise causes of such effects are unclear. We propose that prioritized processing of label-matches can occur for reasons other than self-relevance. Here, we employ the label-matching paradigm to show similar benefits for non-self-relevant labels (SNAKE, FROG, and GREG) over a frequently employed, non-self-relevant control label (OTHER). These benefits suggest the possibility that self-relevance effects in the label-matching paradigm may be confounded with other properties of labels that lead to relative performance benefits, such as concreteness. The size of self-relevance effects may be overestimated in prior work employing the label-matching paradigm, which calls for greater care in the choice of control labels to determine the true magnitude of self-relevance effects. Our results additionally indicate the possibility of a powerful effect of concreteness (and related properties) on associative memory performance.

Keywords

Associative learning Self-relevance Self-identification Concreteness Label matching 

References

  1. Behrens, T. E. J., Hunt, L. T., Woolrich, M. W., & Rushworth, M. F. S. (2008). Associative learning of social value. Nature, 456, 245–250.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Binder, J. R., Westbury, C. F., McKiernan, K. A., Possing, E. T., & Medler, D. A. (2005). Distinct brain systems for processing concrete and abstract concepts. Journal of Cognitive Neuroscience, 17(6), 905–917.CrossRefPubMedGoogle Scholar
  3. Bleasdale, F. A. (1987). Concreteness-dependent associative priming: Separate lexical organization for concrete and abstract words. Journal of Experimental Psychology: Learning Memory and Cognition, 13(4), 582–594.Google Scholar
  4. Bower, G. H. (1970). Imagery as a relational organizer in associative learning 1. Journal of Verbal Learning and Verbal Behavior, 533, 529–533.CrossRefGoogle Scholar
  5. Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10, 433–436.CrossRefPubMedGoogle Scholar
  6. Cisler, J. M., Bacon, A. K., & Williams, N. L. (2009). Phenomenological characteristics of attentional biases towards threat: A critical review. Cognitive Therapy and Research, 33, 221–234.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews. Neuroscience, 3, 201–215.CrossRefPubMedGoogle Scholar
  8. de Groot, A. M. B. (1989). Representational aspects of word imageability and word frequency as assessed through word association. Journal of Experimental Psychology: Learning, Memory, and Cognition, 15, 824–845.Google Scholar
  9. Humphreys, G. W., & Sui, J. (2016). Attentional control and the self: The self attention network (SAN). Cogn Neurosci, 7, 5–29.CrossRefPubMedGoogle Scholar
  10. Johnson, S. C., Baxter, L. C., Wilder, L. S., Pipe, J. G., Heiserman, J. E., & Prigatano, G. P. (2002). Neural correlates of self-reflection. Brain: A Journal of Neurology, 125(8), 1808–1814.CrossRefGoogle Scholar
  11. Keenan, J. P., Wheeler, M. A., Gallup, G. G., & Pascual-Leone, A. (2000). Self-recognition and the right prefrontal cortex. Trends in Cognitive Sciences, 4(9), 338–344.CrossRefPubMedGoogle Scholar
  12. Kelley, W. M., Macrae, C. N., Wyland, C. L., Caglar, S., Inati, S., & Heatherton, T. F. (2002). Finding the self? an event-related fMRI study. Journal of Cognitive Neuroscience, 14(5), 785–794.CrossRefPubMedGoogle Scholar
  13. Kiehl, K. A., Liddle, P. F., Smith, A. M., Mendrek, A., Forster, B. B., & Hare, R. D. (1999). Neural pathways involved in the processing of concrete and abstract words. Human Brain Mapping, 233(7), 225–233.CrossRefGoogle Scholar
  14. Kircher, T. T. J., Senior, C., Phillips, M. L., Benson, P. J., Bullmore, E. T., Brammer, M., … David, A. S. (2000). Towards a functional neuroanatomy of self-processing: Effects of faces and words. Cognitive Brain Research, 10, 133–144.Google Scholar
  15. Kleiner, M., Brainard, D., Pelli, D, (2007). What’s new in psychtoolbox-3? Perception, 36, ECVP Abstract Supplement.Google Scholar
  16. Lagishetti, S. K., & Goswami, S. P. (2012). Measurement of reaction time for processing of concrete and abstract words. Journal of All India Institute of Speech and Hearing JAIISH, 31, 139–144.Google Scholar
  17. LoBue, V., & DeLoache, J. S. (2008). Detecting the snake in the grass. Psychological Science, 19(3), 284–289.CrossRefPubMedGoogle Scholar
  18. Macrae, C. N., Moran, J. M., Heatherton, T. F., Banfield, J. F., & Kelley, W. M. (2004). Medial prefrontal activity predicts memory for self. Cerebral Cortex, 14(6), 647–654.CrossRefPubMedGoogle Scholar
  19. MATLAB and Statistics Toolbox Release (2015a). The MathWorks, Inc.: Natick, MA.Google Scholar
  20. Most, S. B., Chun, M. M., Widders, D. M., & Zald, D. H. (2005). Attentional rubbernecking: Cognitive control and personality in emotion-induced blindness. Psychonomic Bulletin & Review, 12(4), 654–661.CrossRefGoogle Scholar
  21. Notebaert, L., Crombez, G., Van Damme, S., De Houwer, J., & Theeuwes, J. (2011). Signals of threat do not capture, but prioritize, attention: A conditioning approach. Emotion, 11(1), 81–89.CrossRefPubMedGoogle Scholar
  22. O’Doherty, J., Winston, J., Critchley, H., Perrett, D., Burt, D. M., & Dolan, R. J. (2003). Beauty in a smile: The role of medial orbitofrontal cortex in facial attractiveness. Neuropsychologia, 41(2), 147–155.CrossRefPubMedGoogle Scholar
  23. Ohman, A., Flykt, A., & Esteves, F. (2001). Emotion drives attention: Detecting the snake in the grass. Journal of Experimental Psychology: General, 130(3), 466–478.CrossRefGoogle Scholar
  24. Paivio, A. (1965). Abstractness, imagery, and meaningfulness in paired-associate learning. Journal of Verbal Learning and Verbal Behavior, 4, 32–38.CrossRefGoogle Scholar
  25. Paivio, A. (1986). Mental representations. New York: Oxford University Press.Google Scholar
  26. Paivio, A., Yuille, J. C., & Madigan, S. A. (1968). Concreteness, imagery, and meaningfulness values for 925 nouns. Journal of Experimental Psychology Monograph Supplement, 76(1), 1–25.CrossRefGoogle Scholar
  27. Paivio, A., Yuille, J. C., & Smythe, P. C. (1966). Stimulus and response abstractness, imagery, and meaningfulness and reported mediators in paired-associate learning. Canadian Journal of Psychology, 20, 362–378.CrossRefPubMedGoogle Scholar
  28. Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10, 437–442.CrossRefPubMedGoogle Scholar
  29. Pessoa, L. (2009). How do emotion and motivation direct executive control? Trends in Cognitive Sciences, 13(4), 160–166.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H., … Greicius, M. D. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. 27(9):2349–2356.Google Scholar
  31. Smith, S. D., Most, S. B., Newsome, L. A., & Zald, D. H. (2006). An emotion-induced attentional blink elicited by aversively conditioned stimuli. Emotion, 6(3), 523–527.CrossRefPubMedGoogle Scholar
  32. Sui, J., He, X., & Humphreys, G. W. (2012). Perceptual effects of social salience: Evidence from self-prioritization effects on perceptual matching. Journal of Experimental Psychology Human Perception and Performance, 38(5), 1105–1117.CrossRefPubMedGoogle Scholar
  33. Sui, J., & Humphreys, G. W. (2015a). The integrative self: How self-reference integrates perception and memory. Trends in Cognitive Sciences, 19(12), 719–728.CrossRefPubMedGoogle Scholar
  34. Sui, J., & Humphreys, G. W. (2015b). The interaction between self-bias and reward: Evidence for common and distinct processes. Quarterly Journal of Experimental Psychology, 68, 1952–1964.CrossRefGoogle Scholar
  35. Sui, J., & Liu, C. H. (2009). Can beauty be ignored? Effects of facial attractiveness on covert attention. Psychonomic Bulletin & Review, 16(2), 276–281.CrossRefGoogle Scholar
  36. Sui, J., Liu, M., Mevorach, C., & Humphreys, G. W. (2015). The salient self: The left intraparietal sulcus responds to social as well as perceptual-salience after self-association. Cerebral Cortex, 25, 1060–1068.CrossRefPubMedGoogle Scholar
  37. Sui, J., Liu, C. H., Wang, L., & Han, S. (2009). Attentional orientation induced by temporarily established self-referential cues. Quarterly Journal of Experimental Psychology, 62, 844–849.CrossRefGoogle Scholar
  38. Sui, J., Rotshtein, P., & Humphreys, G. W. (2013). Coupling social attention to the self forms a network for personal significance. Proceedings of the National Academy of Sciences of the Unites States of America, 110(19), 7607–7612.CrossRefGoogle Scholar
  39. Symons, C. S., & Johnson, B. T. (1997). The self-reference effect in memory: A meta-analysis. Psychological Bulletin, 121(3), 371–394.CrossRefPubMedGoogle Scholar
  40. Tacikowski, P., Brechmann, a, Marchewka, a, Jednoróg, K., Dobrowolny, M., & Nowicka, a. (2011). Is it about the self or the significance? An fMRI study of self-name recognition. Social Neuroscience, 6(1), 98–107. doi:10.1080/17470919.2010.490665.
  41. Tse, C., & Altarriba, J. (2007). Testing the associative-link hypothesis in immediate serial recall: Evidence from word frequency and word imageability effects. Memory, 6, 675–690.CrossRefGoogle Scholar
  42. Turk, D. J., Heatherton, T. F., Kelley, W. M., Funnell, M. G., Gazzaniga, M. S., & Macrae, C. N. (2002). Mike or me? Self-recognition in a split-brain patient. Nature Neuroscience, 5(9), 841–842.RGoogle Scholar
  43. Vossel, S., Geng, J. J., & Fink, G. R. (2014). Dorsal and ventral attention systems: Distinct neural circuits but collaborative roles. The Neuroscientist, 20(2), 150–159.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Whaley, C. P. (1978). Word-nonword classification time. Journal of Verbal Learning and Verbal Behavior, 17, 143–154.CrossRefGoogle Scholar

Copyright information

© The Psychonomic Society, Inc. 2017

Authors and Affiliations

  1. 1.University of DelawareNewarkUSA

Personalised recommendations