Advertisement

Attention, Perception, & Psychophysics

, Volume 77, Issue 1, pp 150–159 | Cite as

Perceptual failures in the selection and identification of low-prevalence targets in relative prevalence visual search

  • Hayward J. GodwinEmail author
  • Tamaryn Menneer
  • Charlotte A. Riggs
  • Kyle R. Cave
  • Nick Donnelly
Article

Abstract

Previous research has shown that during visual search tasks target prevalence (the proportion of trials in which a target appears) influences both the probability that a target will be detected, and the speed at which participants will quit searching and provide an ‘absent’ response. When prevalence is low (e.g., target presented on 2 % of trials), participants are less likely to detect the target than when prevalence is higher (e.g., 50 % of trials). In the present set of experiments, we examined perceptual failures to detect low prevalence targets in visual search. We used a relative prevalence search task in order to be able to present an overall 50 % target prevalence and thereby prevent the results being accounted for by early quitting behavior. Participants searched for two targets, one of which appeared on 45 % of trials and another that appeared on 5 % of trials, leaving overall target prevalence at 50 %. In the first experiment, participants searched for two dissimilar targets; in the second experiment, participants searched for two similar targets. Overall, the results supported the notion that a reduction in prevalence primarily influenced perceptual failures of identification, rather than of selection. Together, these experiments add to a growing body of research exploring how and why observers fail to detect low prevalence targets, especially in real-world tasks in which some targets are more likely to appear than others.

Keywords

Visual search Relative prevalence Eye movements 

Notes

Acknowledgments

This work was supported by funding from the Economic and Social Sciences Research Council (grant ref. ES/I032398/1).

References

  1. Bakeman, R. (2005). Recommended effect size statistics for repeated measures designs. Behavior Research Methods, 37(3), 379–384. doi: 10.3758/BF03192707 PubMedCrossRefGoogle Scholar
  2. Beanland, V., Lenné, M. G., & Underwood, G. (2014). Safety in numbers: Target prevalence affects the detection of vehicles during simulated driving. Attention, Perception, & Psychophysics. doi: 10.3758/s13414-013-0603-1 Google Scholar
  3. Cain, M. S., Adamo, S. H., & Mitroff, S. R. (2013). A taxonomy of errors in multiple-target visual search. Visual Cognition, 21(7), 899–921. doi: 10.1080/13506285.2013.843627 CrossRefGoogle Scholar
  4. Castelhano, M. S., Pollatsek, A., & Cave, K. R. (2008). Typicality aids search for an unspecified target, but only in identification, and not in attentional guidance. Psychonomic Bulletin & Review, 15, 795–801. doi: 10.3758/PBR.15.4.795 CrossRefGoogle Scholar
  5. Chun, M. M., & Wolfe, J. M. (1996). Just say no: how are visual searches terminated when there is no target present? Cognitive Psychology, 30(1), 39–78. doi: 10.1006/cogp.1996.0002 PubMedCrossRefGoogle Scholar
  6. D’Zmura, M. (1991). Color in visual search. Vision Research, 31(6), 951–966. doi: 10.1016/0042-6989(91)90203-H PubMedCrossRefGoogle Scholar
  7. Davies, D. R., & Parasuraman, R. (1982). The psychology of vigilance. London: Academic Press.Google Scholar
  8. Fleck, M. S., & Mitroff, S. R. (2007). Rare targets are rarely missed in correctable search. Psychological Science, 18(11), 943–947. doi: 10.1111/j.1467-9280.2007.02006.x PubMedCrossRefGoogle Scholar
  9. Fleck, M. S., Samei, E., & Mitroff, S. R. (2010). Generalized “satisfaction of search”: adverse influences on dual-target search accuracy. Journal of Experimental Psychology: Applied, 16(1), 60–71. doi: 10.1037/a0018629 PubMedGoogle Scholar
  10. Godwin, H. J., Menneer, T., Cave, K. R., Helman, S., Way, R. L., & Donnelly, N. (2010a). The impact of relative prevalence on dual-target search for threat items from airport X-ray screening. Acta Psychologica, 134(1), 79–84. doi: 10.1016/j.actpsy.2009.12.009 PubMedCrossRefGoogle Scholar
  11. Godwin, H. J., Menneer, T., Cave, K. R., Thaibsyah, M., & Donnelly, N. (in press). The effects of increasing target prevalence on information processing during visual search. Psychonomic Bulletin & Review. doi: 10.3758/s13423-014-0686-2
  12. Godwin, H. J., Menneer, T., Cave, K. R., & Donnelly, N. (2010b). Dual-target search for high and low prevalence X-ray threat targets. Visual Cognition, 18(10), 1439–1493. doi: 10.1080/13506285.2010.500605 CrossRefGoogle Scholar
  13. Godwin, H. J., Reichle, E. D., & Menneer, T. (in press). Coarse-to-fine eye movement behavior during visual search. Psychonomic Bulletin and Review. doi: 10.3758/s13423-014-0613-6
  14. Malcolm, G., & Henderson, J. (2009). The effects of target template specificity on visual search in real-world scenes: Evidence from eye movements. Journal of Vision, 9, 1–13. doi: 10.1167/9.11.8 PubMedCrossRefGoogle Scholar
  15. Menneer, T., Barrett, D. J. K., Phillips, L., Donnelly, N., & Cave, K. R. (2007). Costs in searching for two targets: Dividing search across target types could improve airport security screening. Applied Cognitive Psychology, 21(7), 915–932. doi: 10.1002/acp.1305 CrossRefGoogle Scholar
  16. Menneer, T., Donnelly, N., Godwin, H. J., & Cave, K. R. (2010). High or low target prevalence increases the dual-target cost in visual search. Journal of Experimental Psychology: Applied, 16(2), 133–144. doi: 10.1037/a0019569 PubMedGoogle Scholar
  17. Mitroff, S. R., & Biggs, A. T. (2014). The ultra-rare-item effect: visual search for exceedingly rare items is highly susceptible to error. Psychological Science, 25(1), 284–289. doi: 10.1177/0956797613504221 PubMedCrossRefGoogle Scholar
  18. Nocum, D. J., Brennan, P. C., Huang, R. T., & Reed, W. M. (2013). The effect of abnormality-prevalence expectation on naïve observer performance and visual search. Radiography, 19(3), 196–199. doi: 10.1016/j.radi.2013.04.004 CrossRefGoogle Scholar
  19. Nodine, C. F., & Kundel, L. (1987). Using eye movements to study visual search and to improve tumor detection. RadioGraphics, 7(6), 1241–1250.PubMedCrossRefGoogle Scholar
  20. Over, E. A. B., Hooge, I. T. C., Vlaskamp, B. N. S., & Erkelens, C. J. (2007). Coarse-to-fine eye movement strategy in visual search. Vision Research, 47(17), 2272–2280. doi: 10.1016/j.visres.2007.05.002 PubMedCrossRefGoogle Scholar
  21. Reed, W. M., Ryan, J. T., Mcentee, M. F., Evanoff, M. G., & Brennan, P. C. (2011). The Effect of Abnormality- Prevalence Expectation on Purpose. Radiology, 258(3), 938–943. doi: 10.1148/radiol.10101090 PubMedCrossRefGoogle Scholar
  22. Rich, A. N., Kunar, M. A., Van Wert, M. J., Hidalgo-Sotelo, B., Horowitz, T. S., & Wolfe, J. M. (2008). Why do we miss rare targets? Exploring the boundaries of the low prevalence effect. Journal of Vision, 8(15), 1–17. doi: 10.1167/8.15.15 PubMedCrossRefGoogle Scholar
  23. Schwark, J. D., MacDonald, J., Sandry, J., & Dolgov, I. (2013). Prevalence-based decisions undermine visual search. Visual Cognition, 21(5), 541–568. doi: 10.1080/13506285.2013.811135 CrossRefGoogle Scholar
  24. Stroud, M. J., Menneer, T., Cave, K. R., & Donnelly, N. (2012). Using the dual-target cost to explore the nature of search target representations. Journal of Experimental Psychology: Human Perception and Performance, 38(1), 113–122. doi: 10.1037/a0025887 PubMedGoogle Scholar
  25. Wolfe, J. M. (2007). Guided Search 4.0: Current Progress with a model of visual search. In W. Gray (Ed.), Integrated Models of Cognitive Systems (pp. 99–119). New York: Oxford.Google Scholar
  26. Wolfe, J. M., Cave, K. R., & Franzel, S. L. (1989). Guided search: an alternative to the feature integration model for visual search. Journal of Experimental Psychology: Human Perception and Performance, 15(3), 419–433. doi: 10.1037/0096-1523.15.3.419 PubMedGoogle Scholar
  27. Wolfe, J. M., Horowitz, T. S., Van Wert, M. J., Kenner, N. M., Place, S. S., & Kibbi, N. (2007). Low target prevalence is a stubborn source of errors in visual search tasks. Journal of Experimental Psychology: General, 136(4), 623–638. doi: 10.1037/0096-3445.136.4.623 CrossRefGoogle Scholar
  28. Wolfe, J. M., Horowitz, T. S., & Kenner, N. M. (2005). Rare items often missed in visual searches. Nature, 435(May), 6–7. doi: 10.1038/435439a Google Scholar
  29. Wolfe, J. M., & Van Wert, M. J. (2010). Varying target prevalence reveals two dissociable decision criteria in visual search. Current Biology, 20(2), 121–124. doi: 10.1016/j.cub.2009.11.066 PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© The Psychonomic Society, Inc. 2014

Authors and Affiliations

  • Hayward J. Godwin
    • 1
    Email author
  • Tamaryn Menneer
    • 1
  • Charlotte A. Riggs
    • 1
  • Kyle R. Cave
    • 1
  • Nick Donnelly
    • 1
  1. 1.School of PsychologyUniversity of SouthamptonSouthamptonUK

Personalised recommendations