Attention, Perception, & Psychophysics

, Volume 77, Issue 1, pp 293–310 | Cite as

Effects of spatial response coding on distractor processing: Evidence from auditory spatial negative priming tasks with keypress, joystick, and head movement responses

  • Malte Möller
  • Susanne Mayr
  • Axel Buchner


Prior studies of spatial negative priming indicate that distractor-assigned keypress responses are inhibited as part of visual, but not auditory, processing. However, recent evidence suggests that static keypress responses are not directly activated by spatially presented sounds and, therefore, might not call for an inhibitory process. In order to investigate the role of response inhibition in auditory processing, we used spatially directed responses that have been shown to result in direct response activation to irrelevant sounds. Participants localized a target sound by performing manual joystick responses (Experiment 1) or head movements (Experiment 2B) while ignoring a concurrent distractor sound. Relations between prime distractor and probe target were systematically manipulated (repeated vs. changed) with respect to identity and location. Experiment 2A investigated the influence of distractor sounds on spatial parameters of head movements toward target locations and showed that distractor-assigned responses are immediately inhibited to prevent false responding in the ongoing trial. Interestingly, performance in Experiments 1 and 2B was not generally impaired when the probe target appeared at the location of the former prime distractor and required a previously withheld and presumably inhibited response. Instead, performance was impaired only when prime distractor and probe target mismatched in terms of location or identity, which fully conforms to the feature-mismatching hypothesis. Together, the results suggest that response inhibition operates in auditory processing when response activation is provided but is presumably too short-lived to affect responding on the subsequent trial.


Auditory Distractor processing Attention Inhibition Object-binding 



The research reported in this article was supported by a grant from the Deutsche Forschungsgemeinschaft (Ma 2610/2-2). We thank Laura Mieth for her assistance with data collection.

Author Note

Malte Möller, Institut für Experimentelle Psychologie, Heinrich-Heine-Universität, Düsseldorf, Germany; Susanne Mayr, Institut für Experimentelle Psychologie, Heinrich-Heine-Universität, Düsseldorf, Germany; Axel Buchner, Institut für Experimentelle Psychologie, Heinrich-Heine-Universität, Düsseldorf, Germany.


  1. Arnott, S. R., & Alain, C. (2011). The auditory dorsal pathway: Orienting vision. Neuroscience and Biobehavioral Reviews, 35(10), 2162–2173. doi: 10.1016/j.neubiorev.2011.04.005 PubMedCrossRefGoogle Scholar
  2. Barfield, W., Cohen, M., & Rosenberg, C. (1997). Visual and auditory localization as a function of azimuth and elevation. The International Journal of Aviation Psychology, 7(2), 123–138. doi: 10.1207/s15327108ijap0702_2 CrossRefGoogle Scholar
  3. Buckolz, E., Avramidis, C., & Fitzgeorge, L. (2008). Prime-trial processing demands and their impact on distractor processing in a spatial negative priming task. Psychological Research, 72(3), 235–248. doi: 10.1007/s00426-007-0107-5 PubMedCrossRefGoogle Scholar
  4. Buckolz, E., Edgar, C., Kajaste, B., Lok, M., & Khan, M. (2012a). Inhibited prime-trial distractor responses solely produce the visual spatial negative priming effect. Attention, Perception, & Psychophysics, 74(8), 1632–1643. doi: 10.3758/s13414-012-0366-0 CrossRefGoogle Scholar
  5. Buckolz, E., Fitzgeorge, L., & Knowles, S. (2012b). Spatial negative priming, but not inhibition of return, with central (foveal) displays. Psychology, 3(9), 666–674. doi: 10.4236/psych.2012.39101 CrossRefGoogle Scholar
  6. Buckolz, E., Goldfarb, A., & Khan, M. (2004). The use of a distractor-assigned response slows later responding in a location negative priming task. Perception & Psychophysics, 66(5), 837–845. doi: 10.3758/BF03194977 CrossRefGoogle Scholar
  7. Buckolz, E., O'Donnell, C., & McAuliffe, J. (1996). The Simon effect: Evidence of a response processing “functional locus”. Human Movement Science, 15(4), 543–564. doi: 10.1016/0167-9457(96)00021-8 CrossRefGoogle Scholar
  8. Buetti, S., & Kerzel, D. (2008). Time course of the Simon effect in pointing movements for horizontal, vertical, and acoustic stimuli: Evidence for a common mechanism. Acta Psychologica, 129(3), 420–428. doi: 10.1016/j.actpsy.2008.09.007 PubMedCrossRefGoogle Scholar
  9. Burle, B., Possamaï, C.-A., Vidal, F., Bonnet, M., & Hasbroucq, T. (2002). Executive control in the Simon effect: An electromyographic and distributional analysis. Psychological Research, 66(4), 324–336. doi: 10.1007/s00426-002-0105-6 PubMedCrossRefGoogle Scholar
  10. Chao, H.-F. (2009). Revisiting the role of probe distractors in negative priming: Location negative priming is observed when probe distractors are consistently absent. Attention, Perception, & Psychophysics, 71(5), 1072–1082. doi: 10.3758/APP.71.5.1072 CrossRefGoogle Scholar
  11. Clifton, R. K. (1992). The development of spatial hearing in human infants. In L. Werner & E. Rubel (Eds.), Developmental psychoacoustics (pp. 135–157). Washington, DC: American Psychological Association.CrossRefGoogle Scholar
  12. Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.): Hillsdale, NJ: Erlbaum.Google Scholar
  13. Coles, M. G. H., Gratton, G., Bashore, T. R., Eriksen, C. W., & Donchin, E. (1985). A psychophysiological investigation of the continuous flow model of human information processing. Journal of Experimental Psychology: Human Perception and Performance, 11(5), 529–553. doi: 10.1037/0096-1523.11.5.529 PubMedGoogle Scholar
  14. Corneil, B. D., & Munoz, D. P. (1996). The influence of auditory and visual distractors on human orienting gaze shifts. The Journal of Neuroscience, 16(24), 8193–8207.PubMedGoogle Scholar
  15. Crammond, D. J., & Kalaska, J. F. (1994). Modulation of preparatory neuronal activity in dorsal premotor cortex due to stimulus-response compatibility. Journal of Neurophysiology, 71(3), 1281–1284.PubMedGoogle Scholar
  16. De Jong, R., Liang, C.-C., & Lauber, E. (1994). Conditional and unconditional automaticity: A dual-process model of effects of spatial stimulus-response correspondence. Journal of Experimental Psychology: Human Perception and Performance, 20(4), 731–750. doi: 10.1037/0096-1523.20.4.731 PubMedGoogle Scholar
  17. De Jong, R., Wierda, M., Mulder, G., & Mulder, L. J. (1988). Use of partial stimulus information in response processing. Journal of Experimental Psychology: Human Perception and Performance, 14(4), 682–692. doi: 10.1037/0096-1523.14.4.682 PubMedGoogle Scholar
  18. Dittrich, K., Rothe, A., & Klauer, K. C. (2012). Increased spatial salience in the social Simon task: A response-coding account of spatial compatibility effects. Attention, Perception, & Psychophysics, 74(5), 911–929. doi: 10.3758/s13414-012-0304-1 CrossRefGoogle Scholar
  19. Dyson, B. J., & Ishfaq, F. (2008). Auditory memory can be object based. Psychonomic Bulletin & Review, 15(2), 409–412. doi: 10.3758/PBR.15.2.409 CrossRefGoogle Scholar
  20. Eimer, M. (1999). Facilitatory and inhibitory effects of masked prime stimuli on motor activation and behavioural performance. Acta Psychologica, 101(2–3), 293–313. doi: 10.1016/S0001-6918(99)00009-8 PubMedCrossRefGoogle Scholar
  21. Eimer, M., & Schlaghecken, F. (2003). Response facilitation and inhibition in subliminal priming. Biological Psychology, 64(1–2), 7–26. doi: 10.1016/S0301-0511(03)00100-5 PubMedCrossRefGoogle Scholar
  22. Eimer, M., Schubö, A., & Schlaghecken, F. (2002). Locus of inhibition in the masked priming of response alternatives. Journal of Motor Behavior, 34(1), 3–10. doi: 10.1080/00222890209601926 PubMedCrossRefGoogle Scholar
  23. Eriksen, C. W., Coles, M. G., Morris, L. R., & O'Hara, W. P. (1985). An electromyographic examination of response competition. Bulletin of the Psychonomic Society, 23(3), 165–168.CrossRefGoogle Scholar
  24. Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191. doi: 10.3758/BF03193146 PubMedCrossRefGoogle Scholar
  25. Fitts, P. M., & Seeger, C. M. (1953). S-R compatibility: spatial characteristics of stimulus and response codes. Journal of Experimental Psychology, 46(3), 199–210. doi: 10.1037/h0062827 PubMedCrossRefGoogle Scholar
  26. Fitzgeorge, L., & Buckolz, E. (2008). Spatial negative priming modulation: The influence of probe-trial target cueing, distractor presence, and an intervening response. European Journal of Cognitive Psychology, 20(6), 994–1026. doi: 10.1080/09541440701686250 CrossRefGoogle Scholar
  27. Fitzgeorge, L., Buckolz, E., & Khan, M. (2011). Recently inhibited responses are avoided for both masked and nonmasked primes in a spatial negative priming task. Attention, Perception, & Psychophysics, 73(5), 1435–1452. doi: 10.3758/s13414-011-0125-7 CrossRefGoogle Scholar
  28. Georgopoulos, A. (1997). Voluntary movement: Computational principles and neural mechanisms. In M. Rugg (Ed.), Cognitive Neuroscience (pp. 131–168). Cambridge, MA: The MIT Press.Google Scholar
  29. Grison, S., & Strayer, D. L. (2001). Negative priming and perceptual fluency: More than what meets the eye. Perception & Psychophysics, 63(6), 1063–1071. doi: 10.3758/BF03194524 CrossRefGoogle Scholar
  30. Guiard, Y. (1983). The lateral coding of rotations: A study of the Simon effect with wheel-rotation responses. Journal of Motor Behavior, 15(4), 331–342.PubMedCrossRefGoogle Scholar
  31. Guy, S., & Buckolz, E. (2007). The locus and modulation of the location negative priming effect. Psychological Research, 71(2), 178–191. doi: 10.1007/s00426-005-0003-9 PubMedCrossRefGoogle Scholar
  32. Guy, S., Buckolz, E., & Khan, M. (2006). The locus of location repetition latency effects. Canadian Journal of Experimental Psychology/Revue canadienne de psychologie experimentale, 60(4), 307–318. doi: 10.1037/cjep2006028 CrossRefGoogle Scholar
  33. Hafter, E. R., & De Maio, J. (1975). Difference thresholds for interaural delay. Journal of the Acoustical Society of America, 57(1), 181–187. doi: 10.1121/1.380412 PubMedCrossRefGoogle Scholar
  34. Hall, M. D., Pastore, R. E., Acker, B. E., & Huang, W. (2000). Evidence for auditory feature integration with spatially distributed items. Perception & Psychophysics, 62(6), 1243–1257. doi: 10.3758/BF03212126 CrossRefGoogle Scholar
  35. Heffner, R. S., & Heffner, H. E. (1992). Visual factors in sound localization in mammals. Journal of Comparative Neurology, 317(3), 219–232. doi: 10.1002/cne.903170302 PubMedCrossRefGoogle Scholar
  36. Holm, S. (1979). A Simple Sequentially Rejective Multiple Test Procedure. Scandinavian Journal of Statistics, 6, 65–70.Google Scholar
  37. Houghton, G., & Tipper, S. P. (1994). A model of inhibitory mechanisms in selective attention. In D. Dagenbach & T. Carr (Eds.), Inhibitory processes in attention, memory, and language (pp. 53–112). San Diego, CA: Academic Press.Google Scholar
  38. Houghton, G., & Tipper, S. P. (1999). Attention and the control of action: An investigation of the effects of selection on population coding of hand and eye movement. In D. Heinke, G. W. Humphreys, & A. Olsen (Eds.), Connectionist models in cognitive neuroscience (Proceedings of the 5th neural computational and psychological workshop) (pp. 283–298). New York: Springer Verlag.CrossRefGoogle Scholar
  39. Houghton, G., Tipper, S. P., Weaver, B., & Shore, D. I. (1996). Inhibition and interference in selective attention: Some tests of a neural network model. Visual Cognition, 3(2), 119–164. doi: 10.1080/713756733 CrossRefGoogle Scholar
  40. Kahneman, D., Treisman, A., & Gibbs, B. J. (1992). The reviewing of object files: Object-specific integration of information. Cognitive Psychology, 24(2), 175–219. doi: 10.1016/0010-0285(92)90007-O PubMedCrossRefGoogle Scholar
  41. Kubovy, M., & Van Valkenburg, D. (2001). Auditory and visual objects. Cognition, 80(1–2), 97–126. doi: 10.1016/S0010-0277(00)00155-4 PubMedCrossRefGoogle Scholar
  42. Leuthold, H., & Schröter, H. (2006). Electrophysiological evidence for response priming and conflict regulation in the auditory Simon task. Brain Research, 1097(1), 167–180. doi: 10.1016/j.brainres.2006.04.055 PubMedCrossRefGoogle Scholar
  43. Maybery, M. T., Clissa, P. J., Parmentier, F. B. R., Leung, D., Harsa, G., Fox, A. M., & Jones, D. M. (2009). Binding of verbal and spatial features in auditory working memory. Journal of Memory and Language, 61(1), 112–133. doi: 10.1016/j.jml.2009.03.001 CrossRefGoogle Scholar
  44. Mayr, S., Buchner, A., Möller, M., & Hauke, R. (2011). Spatial and identity negative priming in audition: Evidence of feature binding in auditory spatial memory. Attention, Perception, & Psychophysics, 73(6), 1710–1732. doi: 10.3758/s13414-011-0138-2 CrossRefGoogle Scholar
  45. Mayr, S., Hauke, R., & Buchner, A. (2009). Auditory location negative priming: A case of feature mismatch. Psychonomic Bulletin & Review, 16(5), 845–849. doi: 10.3758/PBR.16.5.845 CrossRefGoogle Scholar
  46. Meegan, D. V., & Tipper, S. P. (1998). Reaching into cluttered visual environments: Spatial and temporal influences of distracting objects. The Quarterly Journal of Experimental Psychology A: Human Experimental Psychology, 51A(2), 225–249. doi: 10.1080/02724989843000004 CrossRefGoogle Scholar
  47. Milliken, B., Tipper, S. P., Houghton, G., & Lupiáñez, J. (2000). Attending, ignoring, and repetition: On the relation between negative priming and inhibition of return. Perception & Psychophysics, 62(6), 1280–1296. doi: 10.3758/BF03212130 CrossRefGoogle Scholar
  48. Milliken, B., Tipper, S. P., & Weaver, B. (1994). Negative priming in a spatial localization task: Feature mismatching and distractor inhibition. Journal of Experimental Psychology: Human Perception and Performance, 20(3), 624–646. doi: 10.1037/0096-1523.20.3.624 Google Scholar
  49. Möller, M., Mayr, S., & Buchner, A. (2013). Target localization among concurrent sound sources: No evidence for the inhibition of previous distractor responses. Attention, Perception, & Psychophysics, 75(1), 132–144. doi: 10.3758/s13414-012-0380-2 CrossRefGoogle Scholar
  50. Mondor, T. A., Zatorre, R. J., & Terrio, N. A. (1998). Constraints on the selection of auditory information. Journal of Experimental Psychology: Human Perception and Performance, 24(1), 66–79. doi: 10.1037/0096-1523.24.1.66 Google Scholar
  51. Neyedli, H. F., & Welsh, T. N. (2012). The processes of facilitation and inhibition in a cue-target paradigm: Insight from movement trajectory deviations. Acta Psychologica, 139(1), 159–165. doi: 10.1016/j.actpsy.2011.11.001 PubMedCrossRefGoogle Scholar
  52. Park, J., & Kanwisher, N. (1994). Negative priming for spatial locations: Identity mismatching, not distractor inhibition. Journal of Experimental Psychology: Human Perception and Performance, 20(3), 613–623. doi: 10.1037/0096-1523.20.3.613 PubMedGoogle Scholar
  53. Parmentier, F. B. R., Maybery, M. T., & Elsley, J. (2010). The involuntary capture of attention by novel feature pairings: A study of voice-location integration in auditory sensory memory. Attention, Perception, & Psychophysics, 72(2), 279–284. doi: 10.3758/APP.72.2.279 CrossRefGoogle Scholar
  54. Perrott, D. R., Saberi, K., Brown, K., & Strybel, T. Z. (1990). Auditory psychomotor coordination and visual search performance. Perception & Psychophysics, 48(3), 214–226. doi: 10.3758/BF03211521 CrossRefGoogle Scholar
  55. Pumphrey, R. J. (1950). Hearing. Symposium of the Society for Experimental Biology, 4, 3–18.Google Scholar
  56. Ridderinkhof, K. R. (2002). Activation and suppression in conflict tasks: Empirical clarification through distributional analyses. In W. Prinz & B. Hommel (Eds.), Common Mechanisms in Perception and Action (pp. 494–519). Oxford, England: Oxford University Press.Google Scholar
  57. Schlaghecken, F., & Eimer, M. (2002). Motor activation with and without inhibition: Evidence for a threshold mechanism in motor control. Perception & Psychophysics, 64(1), 148–162. doi: 10.3758/BF03194564 CrossRefGoogle Scholar
  58. Schuch, S., Bayliss, A. P., Klein, C., & Tipper, S. P. (2010). Attention modulates motor system activation during action observation: Evidence for inhibitory rebound. Experimental Brain Research, 205(2), 235–249. doi: 10.1007/s00221-010-2358-4 PubMedCentralPubMedCrossRefGoogle Scholar
  59. Simon, J. R. (1990). The effects of an irrelevant directional cue on human information processing. In R. W. Proctor & T. G. Reeve (Eds.), Stimulus-response compatibility: An integrated perspective (pp. 31–86). Oxford, England: North-Holland.Google Scholar
  60. Simon, J. R., Hinrichs, J. V., & Craft, J. L. (1970). Auditory S-R compatibility: Reaction time as a function of ear-hand correspondence and ear-response-location correspondence. Journal of Experimental Psychology, 86(1), 97–102. doi: 10.1037/h0029783 PubMedCrossRefGoogle Scholar
  61. Simon, J. R., & Small, A. M., Jr. (1969). Processing auditory information: Interference from an irrelevant cue. Journal of Applied Psychology, 53(5), 433–435. doi: 10.1037/h0028034 PubMedCrossRefGoogle Scholar
  62. Smid, H. G., Mulder, G., & Mulder, L. J. (1990). Selective response activation can begin before stimulus recognition is complete: A psychophysiological and error analysis of continuous flow. Acta Psychologica, 74(2–3), 169–210. doi: 10.1016/0001-6918(90)90005-Z PubMedCrossRefGoogle Scholar
  63. Sokolov, E. N., Worters, R., & Clarke, A. D. B. (1963). Perception and the conditioned reflex. Oxford: Pergamon Press.Google Scholar
  64. Tipper, S. P., Brehaut, J. C., & Driver, J. (1990). Selection of moving and static objects for the control of spatially directed action. Journal of Experimental Psychology: Human Perception and Performance, 16(3), 492–504. doi: 10.1037/0096-1523.16.3.492 PubMedGoogle Scholar
  65. Tipper, S. P., Lortie, C., & Baylis, G. C. (1992). Selective reaching: Evidence for action-centered attention. Journal of Experimental Psychology: Human Perception and Performance, 18(4), 891–905. doi: 10.1037/0096-1523.18.4.891 PubMedGoogle Scholar
  66. Tipper, S. P., Weaver, B., & Milliken, B. (1995). Spatial negative priming without mismatching: Comment on Park and Kanwisher (1994). Journal of Experimental Psychology: Human Perception and Performance, 21(5), 1220–1229. doi: 10.1037/0096-1523.21.5.1220 Google Scholar
  67. Treisman, A. (1993). The perception of features and objects. In A. Baddeley & L. Weiskrantz (Eds.), Attention: Selection, awareness, and control: A tribute to Donald Broadbent (pp. 5–35). New York, NY: Clarendon Press/Oxford University Press.Google Scholar
  68. Treisman, A., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12(1), 97–136. doi: 10.1016/0010-0285(80)90005-5 PubMedCrossRefGoogle Scholar
  69. Valle-Inclán, F., & Redondo, M. (1998). On the automaticity of ipsilateral response activation in the Simon effect. Psychophysiology, 35(4), 366–371. doi: 10.1017/S0048577298960917 PubMedCrossRefGoogle Scholar
  70. Vallesi, A., Mapelli, D., Schiff, S., Amodio, P., & Umiltà, C. (2005). Horizontal and vertical Simon effect: Different underlying mechanisms? Cognition, 96(1), B33–B43. doi: 10.1016/j.cognition.2004.11.009 PubMedCrossRefGoogle Scholar
  71. Wascher, E., Schatz, U., Kuder, T., & Verleger, R. (2001). Validity and boundary conditions of automatic response activation in the Simon task. Journal of Experimental Psychology: Human Perception and Performance, 27(3), 731–751. doi: 10.1037/0096-1523.27.3.731 PubMedGoogle Scholar
  72. Welsh, T. N., & Elliott, D. (2004). Movement trajectories in the presence of a distracting stimulus: Evidence for a response activation model of selective reaching. The Quarterly Journal of Experimental Psychology A: Human Experimental Psychology, 57(6), 1031–1057. doi: 10.1080/02724980343000666 PubMedCrossRefGoogle Scholar
  73. Welsh, T. N., Elliott, D., & Weeks, D. J. (1999). Hand deviations toward distractors. Evidence for response competition. Experimental Brain Research, 127(2), 207–212. doi: 10.1007/s002210050790 PubMedCrossRefGoogle Scholar
  74. Welsh, T. N., Neyedli, H., & Tremblay, L. (2013). Refining the time course of facilitation and inhibition in attention and action. Neuroscience Letters, 554, 6–10. doi: 10.1016/J.Neulet.2013.08.055 PubMedCrossRefGoogle Scholar
  75. Wickens, C. D., Sandry, D. L., & Vidulich, M. (1983). Compatibility and resource competition between modalities of input, central processing, and output. Human Factors, 25(2), 227–248. doi: 10.1177/001872088302500209 PubMedGoogle Scholar
  76. Wickens, C. D., Vidulich, M., & Sandry-Garza, D. (1984). Principles of S-C-R compatibility with spatial and verbal tasks: The role of display-control location and voice-interactive display-control interfacing. Human Factors, 26(5), 533–543. doi: 10.1177/001872088402600505 PubMedGoogle Scholar
  77. Wiegand, K., & Wascher, E. (2005). Dynamic aspects of stimulus-response correspondence: Evidence for two mechanisms involved in the Simon effect. Journal of Experimental Psychology: Human Perception and Performance, 31(3), 453–464. doi: 10.1037/0096-1523.31.3.453 PubMedGoogle Scholar
  78. Wiegand, K., & Wascher, E. (2007a). Response coding in the Simon task. Psychological Research, 71(4), 401–410. doi: 10.1007/s00426-005-0027-1 PubMedCrossRefGoogle Scholar
  79. Wiegand, K., & Wascher, E. (2007b). The Simon effect for vertical S-R relations: changing the mechanism by randomly varying the S-R mapping rule? Psychological Research, 71(2), 219–233. doi: 10.1007/s00426-005-0023-5 PubMedCrossRefGoogle Scholar
  80. Wyatt, N., & Machado, L. (2013). Evidence inhibition responds reactively to the salience of distracting information during focused attention. PLoS ONE, 8(4), e62809. doi: 10.1371/journal.pone.0062809 PubMedCentralPubMedCrossRefGoogle Scholar
  81. Zmigrod, S., & Hommel, B. (2009). Auditory event files: Integrating auditory perception and action planning. Attention, Perception, & Psychophysics, 71(2), 352–362. doi: 10.3758/APP.71.2.352 CrossRefGoogle Scholar
  82. Zmigrod, S., & Hommel, B. (2010). Temporal dynamics of unimodal and multimodal feature binding. Attention, Perception, & Psychophysics, 72(1), 142–152. doi: 10.3758/APP.72.1.142 CrossRefGoogle Scholar

Copyright information

© The Psychonomic Society, Inc. 2014

Authors and Affiliations

  1. 1.Heinrich-Heine-UniversitätDüsseldorfGermany
  2. 2.Institut für Experimentelle PsychologieHeinrich-Heine-UniversitätDüsseldorfGermany

Personalised recommendations