Attention, Perception, & Psychophysics

, Volume 76, Issue 8, pp 2346–2359 | Cite as

Coherence of visual representations: Attention and integration of contour shape information

  • Patrick GarriganEmail author
  • Christina M. Hamilton


Change blindness demonstrations illustrate the limited detail of visual representations. These demonstrations typically require disruption to the visual input when the change occurs or changes that occur very slowly. With sustained viewing or faster changes to the scenes, changes are more easily detected because attention can be effectively allocated to the part of the scene that is changing. Here, we investigate the interaction of visual attention and memory in the domain of 2-D contour shapes. We show, using a novel combination of established change blindness paradigms, that changes can go unnoticed even when they occur on isolated 2-D contour shapes. The effect appears to be due to involuntary updating of stored shape information. This involuntary updating process, however, is constrained so that previously attended shape information is updated only when attention is reallocated to qualitatively similar shape information.


2D shape and form Change blindness Attention: object-based 

Supplementary material


(M4V 566 kb)


(M4V 792 kb)


  1. Alvarez, G., & Cavanagh, P. (2004). The capacity of visual short term memory is set both by visual information load and by number of objects. Psychological Science, 15(2), 106–111.PubMedCrossRefGoogle Scholar
  2. Barenholtz, E., Cohen, E., Feldman, J., & Singh, M. (2003). Detection of change in shape: an advantage for concavities. Cognition, 89(1), 1–9.PubMedCrossRefGoogle Scholar
  3. Behrmann, M., Zemel, R. S., & Mozer, M. C. (1998). Object-based attention and occlusion: Evidence from normal participants and a computational model. Journal of Experimental Psychology: Human Perception and Performance, 24, 1011–1036.PubMedGoogle Scholar
  4. Blum, H. (1973). Biological shape and visual science (part 1). Journal of Theoretical Biology, 38, 205–287.PubMedCrossRefGoogle Scholar
  5. Drummond, L., & Shomstein, S. (2013). The timecourse of space- and object-based attentional prioritization with varying degrees of certainty. Frontiers in Integrative Neuroscience, 7, 1–10.CrossRefGoogle Scholar
  6. Egly, R., Driver, J., & Rafal, R. D. (1994). Shifting visual attention between objects and locations: Evidence from normal and parietal lesion subjects. Journal of Experimental Psychology: General, 123(2), 161–177.CrossRefGoogle Scholar
  7. Fischer, J. & Whitney, D. (2014). Serial dependence in visual perception. Nature Neuroscience, advance online publication, in press.Google Scholar
  8. Garrigan, P. (2012). The effect of contour closure on shape recognition. Perception, 41(2), 221–235.PubMedCrossRefGoogle Scholar
  9. Hoffman, D. D., & Richards, W. A. (1984). Parts of recognition. Cognition, 18, 65–96.PubMedCrossRefGoogle Scholar
  10. Hollingworth, A., & Henderson, J. M. (2004). Sustained change blindness to incremental scene rotation: A dissociation between explicit change detection and visual memory. Perception & Psychophysics, 66, 800–807.CrossRefGoogle Scholar
  11. Hollingworth, A., Williams, C. C., & Henderson, J. M. (2001). To see and remember: Visually specific information is retained in memory from previously attended objects in natural scenes. Psychological Bulletin & Review, 8(4), 761–768.CrossRefGoogle Scholar
  12. Hollingworth, A., Maxcey-Richard, A. M., & Vecera, S. P. (2012). Spatial distribution of attention within and across objects. The Journal of Experimental Psychology: Human Perception and Performance, 38(1), 135–151.Google Scholar
  13. Howe, P. D. L., & Webb, M. E. (2014). Detecting unidentified changes. PLoS One, 9(1), e84490.PubMedCentralPubMedCrossRefGoogle Scholar
  14. Lamy, D., & Egeth, H. (2002). Object-based selection: The role of attentional shifts. Perception & Psychophysics, 64(1), 52–66.CrossRefGoogle Scholar
  15. Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390, 279–281.PubMedCrossRefGoogle Scholar
  16. O’Craven, K. M., Downing, P. E., & Kanswisher, N. (1999). fMRI evidence for objects as the units of attentional selection. Nature, 401, 584–587.PubMedCrossRefGoogle Scholar
  17. Posner, M. I., & Cohen, Y. (1984). Components of Visual Orienting. In H. Bouma & D. G. Bouwhuis (Eds.), Attention and Performance (Vol. 10, pp. 531–556). Hilldale, N.J.: Erlbaum.Google Scholar
  18. Pylyshyn, Z. W. (1989). The role of location indexes in spatial perception: A sketch of the FINST spatial index model. Cognition, 32, 65–97.PubMedCrossRefGoogle Scholar
  19. Pylyshyn, Z. W., & Storm, R. W. (1988). Tracking multiple independent targets: Evidence for a parallel tracking mechanism. Spatial Vision, 3, 179–197.PubMedCrossRefGoogle Scholar
  20. Rensink, R. A. (2000). The dynamic representations of scenes. Visual Cognition, 7, 17–42.CrossRefGoogle Scholar
  21. Rensink, R. A., O’Regan, J. K., & Clark, J. J. (1997). To see or not to see: the need for attention to perceive changes in scenes. Psychological Science, 8(5), 368–373.CrossRefGoogle Scholar
  22. Rensink, R. A., O’Regan, J. K., & Clark, J. J. (2000). On the failure to detect changes in scenes across brief interruptions. Visual Cognition, 7, 127–145.CrossRefGoogle Scholar
  23. Simons, D. J., Franconeri, S. L., & Reimer, R. L. (2000). Change blindness in the absence of a visual disruption. Perception, 29(10), 1143–1154.PubMedCrossRefGoogle Scholar
  24. Simons, D. J., Chabris, C. F., Schnur, T., & Levin, D. (2002). Evidence for preserved representations in change blindness. Consciousness & Cognition, 11, 78–97.CrossRefGoogle Scholar
  25. Suchow, J. W., & Alvarez, G. A. (2011). Motion silences awareness of visual change. Current Biology, 21(2), 140–143.PubMedCrossRefGoogle Scholar
  26. Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12(1), 97–136.PubMedCrossRefGoogle Scholar
  27. vanMarle, K., & Scholl, B. J. (2003). Attentive tracking of objects vs. substances. Psychological Science, 14(5), 498–504.PubMedCrossRefGoogle Scholar
  28. Vuilleumier, P., Schwartz, S., Duhoux, S., Dolan, R. J., & Driver, J. (2005). Selective attention modulates neural substrates of repetition priming and “implicit” visual memory: Suppressions and enhancements revealed by fMRI. Journal of Cognitive Neuroscience, 17, 1245–1260.PubMedCrossRefGoogle Scholar
  29. Wickens, T. D. (2002). Elementary Signal Detection Theory. Oxford, NY: Oxford University Press.Google Scholar

Copyright information

© The Psychonomic Society, Inc. 2014

Authors and Affiliations

  1. 1.Department of PsychologySaint Joseph’s UniversityPhiladelphiaUSA
  2. 2.Department of BioengineeringPennsylvania State UniversityState CollegeUSA

Personalised recommendations