Attention, Perception, & Psychophysics

, Volume 76, Issue 8, pp 2315–2325 | Cite as

Reward associations and spatial probabilities produce additive effects on attentional selection

  • Beth A. StankevichEmail author
  • Joy J. Geng


Recent studies have shown that reward history acts as a powerful attentional bias, even overcoming top-down goals. This has led to the suggestion that rewards belong to a class of attentional cues based on selection history, which are defined by past outcomes with a stimulus feature. Selection history is thought to be separate from traditional attentional cues based on physical salience and voluntary goals, but there is relatively little understanding of how selection history operates as a mechanism of attentional selection. Critically, it has yet to be understood how multiple sources of selection history interact when presented simultaneously. For example, it may be easier to find something we like if it also appears in a predictable location. We therefore pitted spatial probabilities against reward associations and found that the two sources of information had independent and additive effects. Additionally, the strength of the two sources in biasing attentional selection could be equated. In contrast, while a nonpredictive but perceptually salient cue also exhibited independent and additive effects with reward, reward associations dominated the perceptually salient cue at all levels. Our data indicate that reward associations are part of a class of particularly potent attentional cues that guide behavior through learned expectations. However, selection history should not be thought of as a unitary concept but should be understood as a collection of independent sources of information that bias attention in a similar fashion.


Attention Reward Spatial probability Selection 



We would like to thank Jeongmi Lee for her helpful comments on the manuscript. This work was supported by the Hellman Foundation and the National Science Foundation (BCS-1230377-0).


  1. Anderson, B. A., Laurent, P. A., & Yantis, S. (2011a). Learned value magnifies salience-based attentional capture. PLoS One, 6(11), e27926. doi: 10.1371/journal.pone.0027926.g001 PubMedCentralCrossRefPubMedGoogle Scholar
  2. Anderson, B. A., Laurent, P. A., & Yantis, S. (2011b). Value-driven attentional capture. Proceedings of the National Academy of Sciences, 108(25), 10367–10371. doi: 10.1073/pnas.1104047108 CrossRefGoogle Scholar
  3. Anderson, B. A., & Yantis, S. (2012). Value-driven attentional and oculomotor capture during goal-directed, unconstrained viewing. Attention, Perception, & Psychophysics, 74(8), 1644–1653. doi: 10.3758/s13414-012-0348-2 CrossRefGoogle Scholar
  4. Anderson, B. A., & Yantis, S. (2013). Persistence of value-driven attentional capture. Journal of Experimental Psychology. Human Perception and Performance, 39(1), 6–9. doi: 10.1037/a0030860 PubMedCentralCrossRefPubMedGoogle Scholar
  5. Arnauld, A., & Nicole, P. (1996). Logic or the art of thinking. (J.V. Buroker, Trans.). Cambridge, UK: Cambridge Univ. Press. (Original work published 1662).Google Scholar
  6. Awh, E., Belopolsky, A. V., & Theeuwes, J. (2012). Top-down versus bottom-up attentional control: A failed theoretical dichotomy. Trends in Cognitive Sciences, 16(8), 437–443. doi: 10.1016/j.tics.2012.06.010 PubMedCentralCrossRefPubMedGoogle Scholar
  7. Bernoulli, D. (1954) [1738]. Exposition of a new theory on the measurement of risk. Econometrica, 22, 23–36.Google Scholar
  8. Chelazzi, L., Perlato, A., Santandrea, E., & Della Libera, C. (2013). Rewards teach visual selective attention. Vision Research, 85, 58–72. doi: 10.1016/j.visres.2012.12.005 CrossRefPubMedGoogle Scholar
  9. Chica, A. B., Bartolomeo, P., & Lupiáñez, J. (2013). Two cognitive and neural systems for endogenous and exogenous spatial attention. Behavioural Brain Research, 237, 107–123. doi: 10.1016/j.bbr.2012.09.027 CrossRefPubMedGoogle Scholar
  10. Chun, M. M., & Jiang, Y. (1998). Contextual cueing: Implicit learning and memory of visual context guides spatial attention. Cognitive Psychology, 36(1), 28–71.CrossRefPubMedGoogle Scholar
  11. Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3(3), 215–229. doi: 10.1038/nrn755 CrossRefGoogle Scholar
  12. Della Libera, C., & Chelazzi, L. (2006). Visual selective attention and the effects of monetary rewards. Psychological Science, 17(3), 222–227. doi: 10.1111/j.1467-9280.2006.01689.x CrossRefPubMedGoogle Scholar
  13. Della Libera, C., & Chelazzi, L. (2009). Learning to attend and to ignore is a matter of gains and losses. Psychological Science, 20(6), 778–784. doi: 10.1111/j.1467-9280.2009.02360.x CrossRefPubMedGoogle Scholar
  14. Della Libera, C., Perlato, A., & Chelazzi, L. (2011). Dissociable effects of reward on attentional learning: From passive associations to active monitoring. (M. H. Herzog, Ed.). PLoS One, 6(4), e19460. doi: 10.1371/journal.pone.0019460.g002
  15. Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18(1), 193–222.CrossRefPubMedGoogle Scholar
  16. Dorris, M. C., & Glimcher, P. W. (2004). Activity in posterior parietal cortex is correlated with the relative subjective desirability of action. Neuron, 44(2), 365–378. doi: 10.1016/j.neuron.2004.09.009 CrossRefPubMedGoogle Scholar
  17. Druker, M., & Anderson, B. (2010). Spatial probability aids visual stimulus discrimination. Frontiers in Human Neuroscience. doi: 10.3389/fnhum.2010.00063 PubMedCentralPubMedGoogle Scholar
  18. Egeth, H. E., & Yantis, S. (1997). Visual attention: Control, representation, and time course. Annual Review of Psychology, 48, 269–297. doi: 10.1146/annurev.psych.48.1.269 CrossRefPubMedGoogle Scholar
  19. Fecteau, J. H., Korjoukov, I., & Roelfsema, P. R. (2009). Location and color biases have different influences on selective attention. Vision Research, 49(9), 996–1005. doi: 10.1016/j.visres.2009.03.013 CrossRefPubMedGoogle Scholar
  20. Geng, J. J., & Behrmann, M. (2002). Probability cuing of target location facilitates visual search implicitly in normal participants and patients with hemispatial neglect. Psychological Science, 13(6), 520–525. doi: 10.1111/1467-9280.00491 CrossRefPubMedGoogle Scholar
  21. Geng, J. J., & Behrmann, M. (2005). Spatial probability as an attentional cue in visual search. Perception & Psychophysics, 67(7), 1252–1268.CrossRefGoogle Scholar
  22. Geng, J. J., Soosman, S., Sun, Y., DiQuattro, N. E., Stankevitch, B., & Minzenberg, M. J. (2013). A match made by modafinil: Probability matching in choice decisions and spatial attention. Journal of Cognitive Neuroscience, 25(5), 657–669. doi: 10.1016/j.neuron.2005.04.026 CrossRefPubMedGoogle Scholar
  23. Glimcher, P. W. (2003). Decisions, uncertainty and the brain: The science of neuroeconomics. Cambridge, MA: Mass. Inst. Technol. Press.Google Scholar
  24. Hickey, C., Chelazzi, L., & Theeuwes, J. (2010). Reward changes salience in human vision via the anterior cingulate. Journal of Neuroscience, 30(33), 11096–11103. doi: 10.1523/JNEUROSCI.1026-10.2010 CrossRefPubMedGoogle Scholar
  25. Hickey, C., & van Zoest, W. (2012). Reward creates oculomotor salience. CURBIO, 22(7), R219–R220. doi: 10.1016/j.cub.2012.02.007 Google Scholar
  26. Hickey, C., & van Zoest, W. (2013). Reward-associated stimuli capture the eyes in spite of strategic attentional set. Vision Research, 92, 67–74. doi: 10.1016/j.visres.2013.09.008 CrossRefPubMedGoogle Scholar
  27. Hoffmann, J., & Kunde, W. (1999). Location-specific target expectancies in visual search. Journal of Experimental Psychology. Human Perception and Performance, 25(4), 1127.CrossRefGoogle Scholar
  28. Horowitz, T. S., & Wolfe, J. M. (1998). Visual search has no memory. Nature, 394(6693), 575–577.CrossRefPubMedGoogle Scholar
  29. Itti, L., & Koch, C. (2000). A saliency-based search mechanism for overt and covert shifts of visual attention. Vision Research, 40(10–12), 1489–1506.CrossRefPubMedGoogle Scholar
  30. Jiang, Y. V., Sigstad, H. M., & Swallow, K. M. (2012). The time course of attentional deployment in contextual cueing. Psychonomic Bulletin & Review, 20(2), 282–288. doi: 10.3758/s13423-012-0338-3 CrossRefGoogle Scholar
  31. Jiang, Y. V., Swallow, K. M., & Rosenbaum, G. M. (2013a). Guidance of spatial attention by incidental learning and endogenous cuing. Journal of Experimental Psychology. Human Perception and Performance, 39(1), 285–297. doi: 10.1037/a0028022 PubMedCentralCrossRefPubMedGoogle Scholar
  32. Jiang, Y. V., Swallow, K. M., Rosenbaum, G. M., & Herzig, C. (2013b). Rapid acquisition but slow extinction of an attentional bias in space. Journal of Experimental Psychology. Human Perception and Performance, 39(1), 87–99. doi: 10.1037/a0027611 PubMedCentralCrossRefPubMedGoogle Scholar
  33. Jiang, Y. V., Swallow, K. M., & Sun, L. (2013). Egocentric coding of space for incidentally learned attention: Effects of scene context and task instructions.Google Scholar
  34. Jonides, J. (1981). Voluntary vs. automatic control over the mind's eye's movement. In J. B. Long & A. D. Baddeley (Eds.), Attention and Performance IX. Hillsdale, N.J.: Lawrence Erlbaum Associates.Google Scholar
  35. Kiss, M., Driver, J., & Eimer, M. (2009). Reward priority of visual target singletons modulates event-related potential signatures of attentional selection. Psychological Science, 20(2), 245–251. doi: 10.1111/j.1467-9280.2009.02281.x PubMedCentralCrossRefPubMedGoogle Scholar
  36. Knutson, B., & Cooper, J. C. (2005). Functional magnetic resonance imaging of reward prediction. Current Opinion in Neurology, 18(4), 411–417. Retrieved from CrossRefPubMedGoogle Scholar
  37. Krebs, R. M., Boehler, C. N., Egner, T., & Woldorff, M. G. (2011). The neural underpinnings of how reward associations can both guide and misguide attention. Journal of Neuroscience, 31(26), 9752–9759. doi: 10.1523/JNEUROSCI.0732-11.2011 PubMedCentralCrossRefPubMedGoogle Scholar
  38. Kristjánsson, Á., & Campana, G. (2010). Where perception meets memory: A review of repetition priming in visual search tasks. Attention, Perception, & Psychophysics, 72(1), 5–18. doi: 10.3758/APP.72.1.5 CrossRefGoogle Scholar
  39. Kristjánsson, Á., Sigurjónsdóttir, O., & Driver, J. (2010). Fortune and reversals of fortune in visual search: Reward contingencies for pop-out targets affect search efficiency and target repetition effects. Attention, Perception, & Psychophysics, 72(5), 1229–1236. doi: 10.3758/APP.72.5.1229 CrossRefGoogle Scholar
  40. Leathers, M. L., & Olson, C. R. (2012). In monkeys making value-based decisions, LIP neurons encode cue salience and not action value. Science, 338(6103), 132–135. doi: 10.1126/science.1226405 PubMedCentralCrossRefPubMedGoogle Scholar
  41. Lee, J., & Shomstein, S. (2013). The differential effects of reward on space- and object-based attentional allocation. Journal of Neuroscience, 33(26), 10625–10633. doi: 10.1523/JNEUROSCI.5575-12.2013 PubMedCentralCrossRefPubMedGoogle Scholar
  42. Maljkovic, V., & Nakayama, K. (1994). Priming of pop-out: I. Role of features. Memory & Cognition, 22(6), 657–672.CrossRefGoogle Scholar
  43. Miller, J. (1988). Components of the location probability effect in visual search tasks. Journal of Experimental Psychology. Human Perception and Performance, 14(3), 453.CrossRefPubMedGoogle Scholar
  44. Müller, H. J., & Rabbitt, P. M. (1989). Reflexive and voluntary orienting of visual attention: Time course of activation and resistance to interruption. Journal of Experimental Psychology. Human Perception and Performance, 15(2), 315.CrossRefPubMedGoogle Scholar
  45. Pascal, B. (1966). Pensees. (A.J. Krailsheimer, Trans.). New York, NY: Penguin Books. (Original work published 1670).Google Scholar
  46. Peck, C. J., Jangraw, D. C., Suzuki, M., Efem, R., & Gottlieb, J. (2009). Reward modulates attention independently of action value in posterior parietal cortex. Journal of Neuroscience, 29(36), 11182–11191. doi: 10.1523/JNEUROSCI.1929-09.2009 PubMedCentralCrossRefPubMedGoogle Scholar
  47. Pinto, Y., van der Leij, A. R., Sligte, I. G., Lamme, V. A. F., & Scholte, H. S. (2013). Bottom-up and top-down attention are independent. Journal of Vision, 13(3), 16–16. doi: 10.1167/13.3.16 CrossRefPubMedGoogle Scholar
  48. Platt, M. L., & Glimcher, P. W. (1999). Neural correlates of decision variables in parietal cortex. Nature, 400(6741), 233–238. doi: 10.1038/22268 CrossRefPubMedGoogle Scholar
  49. Posner, M. I. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology, 32(1), 3–25.CrossRefPubMedGoogle Scholar
  50. Raymond, J. E., & O'Brien, J. L. (2009). Selective visual attention and motivation the consequences of value learning in an attentional blink task. Psychological Science, 20(8), 981–988.CrossRefPubMedGoogle Scholar
  51. Sternberg, S. (1967). Two operations in character recognition: Some evidence from reaction-time measurements. Perception & Psychophysics, 2(2), 45–53.CrossRefGoogle Scholar
  52. Sternberg, S. (1969). The discovery of processing stages: Extensions of Donders' method. Acta Psychologica, 30, 276–315.CrossRefGoogle Scholar
  53. Sugrue, L. P. (2004). Matching behavior and the representation of value in the parietal cortex. Science, 304(5678), 1782–1787. doi: 10.1126/science.1094765 CrossRefPubMedGoogle Scholar
  54. Sugrue, L. P., Corrado, G. S., & Newsome, W. T. (2005). Choosing the greater of two goods: Neural currencies for valuation and decision making. Nature Reviews Neuroscience, 6(5), 363–375. doi: 10.1038/nrn1666 CrossRefPubMedGoogle Scholar
  55. von Neumann J., & Morgenstern O. (1944). The Theory of Games and Economic Behavior. Princeton, NJ: Princeton Univ. Press.Google Scholar
  56. Walthew, C., & Gilchrist, I. D. (2006). Target location probability effects in visual search: An effect of sequential dependencies. Journal of Experimental Psychology. Human Perception and Performance, 32(5), 1294–301. doi: 10.1037/0096-1523.32.5.1294 CrossRefPubMedGoogle Scholar
  57. Wright, R. D., & Richard, C. M. (2003). Sensory mediation of stimulus-driven attentional capture in multiple-cue displays. Perception & Psychophysics, 65(6), 925–938.CrossRefGoogle Scholar

Copyright information

© The Psychonomic Society, Inc. 2014

Authors and Affiliations

  1. 1.Center for Mind and BrainUniversity of California, DavisDavisUSA
  2. 2.Neuroscience Graduate ProgramUniversity of CaliforniaDavisUSA
  3. 3.Department of PsychologyUniversity of CaliforniaDavisUSA

Personalised recommendations