Advertisement

Attention, Perception, & Psychophysics

, Volume 76, Issue 6, pp 1671–1697 | Cite as

The bisection point across variants of the task

  • Miguel A. García-PérezEmail author
  • Eli Peli
Article

Abstract

Bisection tasks are used in research on normal space and time perception and to assess the perceptual distortions accompanying neurological disorders. Several variants of the bisection task are used, which often yield inconsistent results, prompting the question of which variant is most dependable and which results are to be trusted. We addressed this question using theoretical and experimental approaches. Theoretical performance in bisection tasks is derived from a general model of psychophysical performance that includes sensory components and decisional processes. The model predicts how performance should differ across variants of the task, even when the sensory component is fixed. To test these predictions, data were collected in a within-subjects study with several variants of a spatial bisection task, including a two-response variant in which observers indicated whether a line was transected to the right or left of the midpoint, a three-response variant (which included the additional option to respond “midpoint”), and a paired-comparison variant of the three-response format. The data supported the model predictions, revealing that estimated bisection points were least dependable with the two-response variant, because this format confounds perceptual and decisional influences. Only the three-response paired-comparison format can separate out these influences. Implications for research in basic and clinical fields are discussed.

Keywords

Bisection task Landmark task Method of single stimuli Single-presentation method Two-alternative forced-choice Response bias Indecision 

Notes

Author note

This research was supported by Grant Nos. PSI2009-08800, from Ministerio de Ciencia e Innovación, and PSI2012-32903, from Ministerio de Economía y Competitividad, to M.A.G.-P., and by NIH Grant Nos. R01EY05957 and R01EY12890 to E.P. We thank Zachary Reynolds for his help in participant recruitment and data collection.

References

  1. Alcalá-Quintana, R., & García-Pérez, M. A. (2011). A model for the time-order error in contrast discrimination. Quarterly Journal of Experimental Psychology, 64, 1221–1248. doi: 10.1080/17470218.2010.540018 CrossRefGoogle Scholar
  2. Allan, L. G. (2002). The location and interpretation of the bisection point. Quarterly Journal of Experimental Psychology, 55B, 43–60. doi: 10.1080/02724990143000162 CrossRefGoogle Scholar
  3. Allan, L. G., & Kristofferson, A. B. (1974). Successiveness discrimination: Two models. Perception & Psychophysics, 15, 37–46. doi: 10.3758/BF03205825 CrossRefGoogle Scholar
  4. Bain, L. J., & Engelhardt, M. (1992). Introduction to probability and mathematical statistics (2nd ed.). Pacific Grove, CA: Duxbury.Google Scholar
  5. Bisiach, E., Ricci, R., Lualdi, M., & Colombo, M. R. (1998). Perceptual and response bias in unilateral neglect: Two modified versions of the Milner landmark task. Brain and Cognition, 37, 369–386. doi: 10.1006/brcg.1998.1003 PubMedCrossRefGoogle Scholar
  6. Bonato, M., Priftis, K., Marenzi, R., & Zorzi, M. (2008). Modulation of hemispatial neglect by directional and numerical cues in the line bisection task. Neuropsychologia, 46, 426–433. doi: 10.1016/j.neuropsychologia.2007.08.019 PubMedCrossRefGoogle Scholar
  7. Bradley, E. L., & Blackwood, L. G. (1989). Comparing paired data: A simultaneous test for means and variances. American Statistician, 43, 234–235. doi: 10.1080/00031305.1989.10475665 Google Scholar
  8. Cavézian, C., Valadao, D., Hurwitz, M., Saoud, M., & Danckert, J. (2012). Finding centre: Ocular and fMRI investigations of bisection and landmark task performance. Brain Research, 1437, 89–103. doi: 10.1016/j.brainres.2011.12.002 PubMedCrossRefGoogle Scholar
  9. Droit-Volet, S., & Izaute, M. (2009). Improving time discrimination in children and adults in a temporal bisection task: The effects of feedback and no forced choice on decision and memory processes. Quarterly Journal of Experimental Psychology, 62, 1173–1188. doi: 10.1080/17470210802384180 CrossRefGoogle Scholar
  10. Fechner, G. T. (1966). Elements of psychophysics. New York, NY: Holt (Original work published 1860).Google Scholar
  11. Fouriezos, G., Capstick, G., Monette, F., Bellemare, C., Parkinson, M., & Dumoulin, A. (2007). Judgments of synchrony between auditory and moving or still visual stimuli. Canadian Journal of Experimental Psychology, 61, 277–292. doi: 10.1037/cjep2007028 PubMedCrossRefGoogle Scholar
  12. García-Pérez, M. A. (2013). Statistical criteria for parallel tests: A comparison of accuracy and power. Behavior Research Methods, 45, 999–1010. doi: 10.3758/s13428-013-0328-z PubMedCrossRefGoogle Scholar
  13. García-Pérez, M. A. (2014). Adaptive psychophysical methods for nonmonotonic psychometric functions. Attention, Perception, & Psychophysics, 76, 621–641. doi: 10.3758/s13414-013-0574-2
  14. García-Pérez, M. A., & Alcalá-Quintana, R. (2005). Sampling plans for fitting the psychometric function. Spanish Journal of Psychology, 8, 256–289.PubMedCrossRefGoogle Scholar
  15. García-Pérez, M. A., & Alcalá-Quintana, R. (2010a). The difference model with guessing explains interval bias in two-alternative forced-choice detection procedures. Journal of Sensory Studies, 25, 876–898. doi: 10.1111/j.1745-459X.2010.00310.x CrossRefGoogle Scholar
  16. García-Pérez, M. A., & Alcalá-Quintana, R. (2010b). Reminder and 2AFC tasks provide similar estimates of the difference limen: A reanalysis of data from Lapid, Ulrich, and Rammsayer (2008) and a discussion of Ulrich and Vorberg (2009). Attention, Perception, & Psychophysics, 72, 1155–1178. doi: 10.3758/APP.72.4.1155 CrossRefGoogle Scholar
  17. García-Pérez, M. A., & Alcalá-Quintana, R. (2011a). Improving the estimation of psychometric functions in 2AFC discrimination tasks. Frontiers in Psychology, 2, 96. doi: 10.3389/fpsyg.2011.00096 PubMedCentralPubMedGoogle Scholar
  18. García-Pérez, M. A., & Alcalá-Quintana, R. (2011b). Interval bias in 2AFC detection tasks: Sorting out the artifacts. Attention, Perception, & Psychophysics, 73, 2332–2352. doi: 10.3758/s13414-011-0167-x CrossRefGoogle Scholar
  19. García-Pérez, M. A., & Alcalá-Quintana, R. (2012a). Correction to “Reminder and 2AFC tasks provide similar estimates of the difference limen: A reanalysis of data from Lapid, Ulrich, and Rammsayer (2008) and a discussion of Ulrich and Vorberg (2009). Attention, Perception, & Psychophysics, 74, 489–492. doi: 10.3758/s13414-012-0274-3 CrossRefGoogle Scholar
  20. García-Pérez, M. A., & Alcalá-Quintana, R. (2012b). On the discrepant results in synchrony judgment and temporal-order judgment tasks: A quantitative model. Psychonomic Bulletin & Review, 19, 820–846. doi: 10.3758/s13423-012-0278-y CrossRefGoogle Scholar
  21. García-Pérez, M. A., & Alcalá-Quintana, R. (2012c). Response errors explain the failure of independent-channels models of perception of temporal order. Frontiers in Psychology, 3, 94. doi: 10.3389/fpsyg.2012.00094 PubMedCentralPubMedGoogle Scholar
  22. García-Pérez, M. A., & Alcalá-Quintana, R. (2013). Shifts of the psychometric function: Distinguishing bias from perceptual effects. Quarterly Journal of Experimental Psychology, 66, 319–337. doi: 10.1080/17470218.2012.708761 CrossRefGoogle Scholar
  23. Gil, S., & Droit-Volet, S. (2011). “Time flies in the presence of angry faces”.. depending on the temporal task used! Acta Psychologica, 136, 354–362. doi: 10.1016/j.actpsy.2010.12.010 PubMedCrossRefGoogle Scholar
  24. Gobell, J., & Carrasco, M. (2005). Attention alters the appearance of spatial frequency and gap size. Psychological Science, 16, 644–651. doi: 10.1111/j.1467-9280.2005.01588.x PubMedCrossRefGoogle Scholar
  25. Harvey, M. (2004). Perceptual and premotor neglect: Is there an ideal task to categorise patients? Cortex, 40, 323–328. doi: 10.1016/S0010-9452(08)70127-8 PubMedCrossRefGoogle Scholar
  26. Harvey, M., & Olk, B. (2004). Comparison of the Milner and Bisiach landmark tasks: Can neglect patients be classified consistently? Cortex, 40, 659–665. doi: 10.1016/S0010-9452(08)70162-X PubMedCrossRefGoogle Scholar
  27. Harvey, M., Krämer-McCaffery, T., Dow, L., Murphy, P. J. S., & Gilchrist, I. D. (2002). Categorisation of ‘perceptual’ and ‘premotor’ neglect patients across different tasks: Is there strong evidence for a dichotomy? Neuropsychologia, 40, 1387–1395. doi: 10.1016/S0028-3932(01)00202-0 PubMedCrossRefGoogle Scholar
  28. Kopec, C. D., & Brody, C. D. (2010). Human performance on the temporal bisection task. Brain and Cognition, 74, 262–272. doi: 10.1016/j.bandc.2010.08.006 PubMedCentralPubMedCrossRefGoogle Scholar
  29. Lee, K.-H., Bhaker, R. S., Mysore, A., Parks, R. W., Birkett, P. B. L., & Woodruff, P. W. R. (2009). Time perception and its neuropsychological correlates in patients with schizophrenia and in healthy volunteers. Psychiatry Research, 166, 174–183. doi: 10.1016/j.psychres.2008.03.004 PubMedCrossRefGoogle Scholar
  30. Leone, F. C., Nelson, L. S., & Nottingham, R. B. (1961). The folded normal distribution. Technometrics, 3, 543–550. doi: 10.1080/00401706.1961.10489974 CrossRefGoogle Scholar
  31. Lin, L. I.-K. (1989). A concordance correlation coefficient to evaluate reproducibility. Biometrics, 45, 255–268. doi: 10.2307/2532051 PubMedCrossRefGoogle Scholar
  32. Lin, L., Hedayat, A. S., Sinha, B., & Yang, M. (2002). Statistical methods for assessing agreement: Models, issues, and tools. Journal of the American Statistical Association, 97, 257–270. doi: 10.1198/016214502753479392 CrossRefGoogle Scholar
  33. Luh, K. E. (1995). Line bisection and perceptual asymmetries in normal individuals: What you see is not what you get. Neuropsychology, 9, 435–448. doi: 10.1037/0894-4105.9.4.435 CrossRefGoogle Scholar
  34. Marshall, J. C., & Halligan, P. W. (1989). When right goes left: An investigation of line bisection in a case of visual neglect. Cortex, 25, 503–515. doi: 10.1016/S0010-9452(89)80065-6 PubMedCrossRefGoogle Scholar
  35. Massen, C., Rieger, M., & Sülzenbrück, S. (2014). Using scissors to bisect a line: A perception–action dissociation in complex tool use. Attention, Perception, & Psychophysics, 76, 172–178. doi: 10.3758/s13414-013-0564-4 CrossRefGoogle Scholar
  36. Milner, A. D., Brechmann, N., & Pagliarini, L. (1992). To halve and to halve not: An analysis of line bisection judgements in normal subjects. Neuropsychologia, 30, 515–526. doi: 10.1016/0028-3932(92)90055-Q PubMedCrossRefGoogle Scholar
  37. Milner, A. D., Harvey, M., Roberts, R. C., & Foster, S. V. (1993). Line bisection error in visual neglect: Misguided action or size distortion? Neuropsychologia, 31, 39–49. doi: 10.1016/0028-3932(93)90079-F PubMedCrossRefGoogle Scholar
  38. Morgan, M., Dillenburger, B., Raphael, S., & Solomon, J. A. (2012). Observers can voluntarily shift their psychometric functions without losing sensitivity. Attention, Perception, & Psychophysics, 74, 185–193. doi: 10.3758/s13414-011-02222-7 CrossRefGoogle Scholar
  39. Numerical Algorithms Group. (1999). NAG Fortran library manual, mark 19. Oxford, UK: Author.Google Scholar
  40. Olk, B., Wee, J., & Kingstone, A. (2004). The effect of hemispatial neglect on the perception of centre. Brain and Cognition, 55, 365–367. doi: 10.1016/j.bandc.2004.02.048 PubMedCrossRefGoogle Scholar
  41. Raslear, T. G. (1985). Perceptual bias and response bias in temporal bisection. Perception & Psychophysics, 38, 261–268. doi: 10.3758/BF03207153 CrossRefGoogle Scholar
  42. Schenkenberg, T., Bradford, D. C., & Ajax, E. T. (1980). Line bisection and unilateral visual neglect in patients with neurologic impairment. Neurology, 30, 509–517. doi: 10.1212/WNL.30.5.509 PubMedCrossRefGoogle Scholar
  43. Schmitz, R., Deliens, G., Mary, A., Urbain, C., & Peigneux, P. (2011). Selective modulations of attentional asymmetries after sleep deprivation. Neuropsychologia, 49, 3351–3360. doi: 10.1016/j.neuropsychologia.2011.08.009 PubMedCrossRefGoogle Scholar
  44. Schneider, K. A. (2011). Attention alters decision criteria but not appearance: A reanalysis of Anton-Erxleben, Abrams, and Carrasco (2010). Journal of Vision, 11(13), 7, 1–8. doi: 10.1167/11.13.7 CrossRefGoogle Scholar
  45. Schneider, K. A., & Bavelier, D. (2003). Components of visual prior entry. Cognitive Psychology, 47, 333–366. doi: 10.1016/S0010-0285(03)00035-5 PubMedCrossRefGoogle Scholar
  46. Schneider, K. A., & Komlos, M. (2008). Attention biases decisions but does not alter appearance. Journal of Vision, 8(15), 3, 1–10. doi: 10.1167/8.15.3 CrossRefGoogle Scholar
  47. Schuett, S., Dauner, R., & Zihl, J. (2011). Line bisection in unilateral homonymous visual field defects. Cortex, 47, 47–52. doi: 10.1016/j.cortex.2010.01.008 PubMedCrossRefGoogle Scholar
  48. Spence, C., & Parise, C. (2010). Prior-entry: A review. Consciousness and Cognition, 19, 364–379. doi: 10.1016/j.concog.2009.12.001 PubMedCrossRefGoogle Scholar
  49. Stevenson, R. A., & Wallace, M. T. (2013). Multisensory temporal integration: Task and stimulus dependencies. Experimental Brain Research, 227, 249–261. doi: 10.1007/s00221-013-3507-3 PubMedCentralPubMedCrossRefGoogle Scholar
  50. Toba, M.-N., Cavanagh, P., & Bartolomeo, P. (2011). Attention biases the perceived midpoint of horizontal lines. Neuropsychologia, 49, 238–246. doi: 10.1016/j.neuropsychologia.2010.11.022 PubMedCrossRefGoogle Scholar
  51. Toraldo, A., McIntosh, R. D., Dijkerman, H. C., & Milner, A. D. (2004). A revised method for analysing neglect using the landmark task. Cortex, 40, 415–431. doi: 10.1016/S0010-9452(08)70136-9 PubMedCrossRefGoogle Scholar
  52. Ulrich, R., & Vorberg, D. (2009). Estimating the difference limen in 2AFC tasks: Pitfalls and improved estimators. Attention, Perception, & Psychophysics, 71, 1219–1227. doi: 10.3758/APP.71.6.1219 CrossRefGoogle Scholar
  53. van Eijk, R. L. J., Kohlrausch, A., Juola, J. F., & van de Par, S. (2008). Audiovisual synchrony and temporal order judgments: Effects of experimental method and stimulus type. Perception & Psychophysics, 70, 955–968. doi: 10.3758/PP.70.6.955 CrossRefGoogle Scholar
  54. Wearden, J. H. (1992). Temporal generalization in humans. Journal of Experimental Psychology: Animal Behavior Processes, 18, 134–144. doi: 10.1037/0097-7403.18.2.134 Google Scholar
  55. Wearden, J. H., & Ferrara, A. (1995). Stimulus spacing effects in temporal bisection by humans. Quarterly Journal of Experimental Psychology, 48B, 289–310. doi: 10.1080/14640749508401454 Google Scholar

Copyright information

© Psychonomic Society, Inc. 2014

Authors and Affiliations

  1. 1.Departamento de Metodología, Facultad de PsicologíaUniversidad ComplutenseMadridSpain
  2. 2.Schepens Eye Research Institute, Massachusetts Eye and Ear InfirmaryHarvard Medical SchoolBostonUSA

Personalised recommendations