Attention, Perception, & Psychophysics

, Volume 76, Issue 4, pp 1234–1241 | Cite as

Response inhibition and adaptations to response conflict in 6- to 8-year-old children: Evidence from the Simon effect

  • Cristina Iani
  • Giacomo Stella
  • Sandro Rubichi


Several studies have shown that the Simon effect, which is the advantage of spatial correspondence between stimulus and response locations when the stimulus location is task-irrelevant, decreases with increasing response times and is affected by preceding-trial correspondence. These modulations suggest the existence of control mechanisms that adapt our behavior to current goals by responding to the conflict experienced within a trial and by preventing the recurrence of a conflict in the subsequent trial. The aim of the present study was to assess whether these control mechanisms, which are well consolidated in adults and in children older than 8 years of age, are present in children between 6 and 8 years old. To this end, we tested 32 first-grade (6–7 years) and 34 second-grade (7–8 years) children on a Simon task in which correspondence sequence was manipulated on a trial-by-trial basis. The Simon effect was larger for first- than for second-graders and decreased with increasing response times only in second-graders. Crucially, for both groups, the effect was reduced when the preceding trial was noncorresponding, and the reductions were comparable for the two groups, indicating that trial-by-trial control mechanisms are already present in first-grade children and may be dissociated from within-trial control adjustments.


Cognitive control Response inhibition Conflict-driven adaptations Correspondence sequence Simon effect 


Author Note

This work was supported by a grant from the Italian Ministry of Education, University and Research (Grant No. 2008ZN5J5S) to S.R. and C.I. We thank Chiara Annunziata and Anna Lodesani for helping with the data collection, and two anonymous reviewers for their helpful comments on an earlier version of the manuscript.


  1. Band, G. P., van der Molen, M. W., Overtoom, C. C., & Verbaten, M. N. (2000). The ability to activate and inhibit speeded responses: Separate developmental trends. Journal of Experimental Child Psychology, 75, 263–290.PubMedCrossRefGoogle Scholar
  2. Barber, P. J., & O’Leary, M. J. (1997). The relevance of salience: Towards an account of irrelevant S–R compatibility effects. In B. Hommel & W. Prinz (Eds.), Theoretical issues in stimulus–response compatibility (pp. 135–172). Amsterdam, The Netherlands: North-Holland.CrossRefGoogle Scholar
  3. Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108, 624–652. doi: 10.1037/0033-295X.108.3.624 PubMedCrossRefGoogle Scholar
  4. Botvinick, M. M., Cohen, J. D., & Carter, C. S. (2004). Conflict monitoring and anterior cingulate cortex: An update. Trends in Cognitive Sciences, 8, 539–546. doi: 10.1016/j.tics.2004.10.003 PubMedCrossRefGoogle Scholar
  5. Braver, T. S., Gray, J. R., & Burgess, G. C. (2007). Explaining many varieties in working memory variations: Dual mechanisms of cognitive control. In A. Conway, C. Jarrold, M. J. Kane, A. Miyake, & J. Towse (Eds.), Variation in working memory (pp. 76–106). Oxford, UK: Oxford University Press.Google Scholar
  6. Bub, D. N., Masson, M. E. J., & Lalonde, C. E. (2006). Cognitive control in children: Stroop interference and suppression of word reading. Psychological Science, 17, 351–357.PubMedCrossRefGoogle Scholar
  7. Bunge, S. A., & Crone, E. A. (2009). Neural correlates of development of cognitive control. In J. M. Rumsey & M. Ernst (Eds.), Neuroimaging in developmental clinical neuroscience (pp. 22–37). New York, NY: Cambridge University Press.CrossRefGoogle Scholar
  8. Bunge, S. A., Dudukovic, N. M., Thomason, M. E., Vaidya, C. J., & Gabrieli, J. D. E. (2002). Immature frontal lobe contribution to cognitive control in children: Evidence from fMRI. Neuron, 33, 301–311.PubMedCrossRefGoogle Scholar
  9. Cao, J., Wang, S., Ren, Y., Zhang, Y., Tu, W., Shen, H., & Xia, Y. (2013). Interference control in 6–11 year-old children with and without ADHD: Behavioral and ERP study. International Journal of Developmental Neuroscience, 31, 342–349.PubMedCrossRefGoogle Scholar
  10. Chatham, C. H., Frank, M. J., & Munakata, Y. (2009). Pupillometric and behavioral markers of a developmental shift in the temporal dynamics of cognitive control. Proceedings of the National Academy of Sciences, 106, 5529–5533.CrossRefGoogle Scholar
  11. Davidson, M. C., Amso, D., Anderson, L. C., & Diamond, A. (2006). Development of cognitive control and executive functions from 4 to 13 years: Evidence from manipulations of memory, inhibition, and task switching. Neuropsychologia, 44, 2037–2078.PubMedCentralPubMedCrossRefGoogle Scholar
  12. de Jong, R., Liang, C.-C., & Lauber, E. (1994). Conditional and unconditional automaticity: A dual-process model of effects of spatial stimulus–response correspondence. Journal of Experimental Psychology: Human Perception and Performance, 20, 731–750. doi: 10.1037/0096-1523.20.4.731 PubMedGoogle Scholar
  13. Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135–168.PubMedCrossRefGoogle Scholar
  14. Egner, T., Ely, S., & Grinband, J. (2010). Going, going, gone: Characterizing the time-course of congruency sequence effects. Frontiers in Psychology, 1, 154. doi: 10.3389/fpsyg.2010.00154 PubMedCentralPubMedCrossRefGoogle Scholar
  15. Egner, T., & Hirsch, J. (2005). Cognitive control mechanisms resolve conflict through cortical amplification of task-relevant information. Nature Neuroscience, 8, 1784–1790. doi: 10.1038/nn1594 PubMedCrossRefGoogle Scholar
  16. Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a non search task. Perception & Psychophysics, 16, 143–149. doi: 10.3758/BF03203267 CrossRefGoogle Scholar
  17. Fan, J., McCandliss, B. D., Sommer, T., Raz, A., & Posner, M. I. (2002). Testing the efficiency and independence of attentional networks. NeuroImage, 18, 42–57.CrossRefGoogle Scholar
  18. Forstmann, B. U., Jahfari, S., Scholte, H. S., Wolfensteller, U., van der Wildenberg, W. P. M., & Ridderinkhof, K. R. (2008). Function and structure of the right inferior frontal cortex predict individual differences in response inhibition: A model-based approach. Journal of Neuroscience, 28, 9790–9796. doi: 10.1523/JNEUROSCI.1465-08.2008 PubMedCrossRefGoogle Scholar
  19. Friedman, D., Nessler, D., Cycowicz, Y. M., & Horton, C. (2009). Development of and change in cognitive control: A comparison of children, young adults, and older adults. Cognitive, Affective, & Behavioral Neuroscience, 9, 91–102. doi: 10.3758/CABN.9.1.91 CrossRefGoogle Scholar
  20. Gratton, G., Coles, M. G. H., & Donchin, E. (1992). Optimizing the use of information: Strategic control of activation of responses. Journal of Experimental Psychology: General, 121, 480–506. doi: 10.1037/0096-3445.121.4.480 CrossRefGoogle Scholar
  21. Hommel, B., Proctor, R. W., & Vu, K.-P. L. (2004). A feature-integration account of sequential effects in the Simon task. Psychological Research, 68, 1–17. doi: 10.1007/s00426-003-0132-y PubMedCrossRefGoogle Scholar
  22. Hsu, N. S., & Jaeggi, S. M. (2013). The emergence of cognitive control abilities in childhood. In S. Andersen & D. Pine (Eds.), The neurobiology of childhood—Current topics in behavioral neurosciences. Berlin: Springer. doi: 10.1007/7854_2013_241
  23. Iani, C., Rubichi, S., Gherri, E., & Nicoletti, R. (2009). Co-occurrence of sequential and practice effects in the Simon task: Evidence for two independent mechanisms affecting response selection. Memory & Cognition, 37, 358–367. doi: 10.3758/MC.37.3.358 CrossRefGoogle Scholar
  24. Ikeda, Y., Okuzumi, H., Kokubun, M., & Haishi, K. (2011). Age-related trends of interference control in school-age children and young adults in the Stroop color-word test. Psychological Reports, 108, 577–584.PubMedCrossRefGoogle Scholar
  25. Jongen, E. M. M., & Jonkman, L. M. (2008). The developmental pattern of stimulus and response interference in a color-object Stoop task: An ERP study. BMC Neuroscience, 9(82), 1–24. doi: 10.1186/1471-2202-9-82 Google Scholar
  26. Kelly, A. M. C., Di Martino, A., Uddin, L. Q., Shehzad, Z., Gee, D. G., Reiss, P. T., & Milham, M. P. (2009). Development of anterior cingulate functional connectivity from late childhood to early adulthood. Cerebral Cortex, 19, 640–657. doi: 10.1093/cercor/bhn117 PubMedCrossRefGoogle Scholar
  27. Kerns, J. G. (2006). Anterior cingulate and prefrontal cortex activity in an FMRI study of trial-to-trial adjustments on the Simon task. NeuroImage, 33, 399–405. doi: 10.1016/j.neuroimage.2006.06.012 PubMedCrossRefGoogle Scholar
  28. Kerns, J. G., Cohen, J. D., MacDonald, A. W., III, Cho, R. Y., Stenger, V. A., & Carter, C. S. (2004). Anterior cingulate conflict monitoring and adjustments in control. Science, 303, 1023–1026. doi: 10.1126/science.1089910 PubMedCrossRefGoogle Scholar
  29. Kornblum, S., Hasbroucq, T., & Osman, A. (1990). Dimensional overlap: Cognitive basis for stimulus–response compatibility—A model and taxonomy. Psychological Review, 97, 253–270. doi: 10.1037/0033-295X.97.2.253 PubMedCrossRefGoogle Scholar
  30. Lamm, C., Zelazo, P. D., & Lewis, M. D. (2006). Neural correlates of cognitive control in childhood and adolescence: Disentangling the contributions of age and executive function. Neuropsychologia, 44, 2139–2148.PubMedCrossRefGoogle Scholar
  31. Larson, M. J., Clawson, A., Clayson, P. E., & South, M. (2012). Cognitive control and conflict adaptation similarities in children and adults. Developmental Neuropsychology, 37, 343–357.PubMedCrossRefGoogle Scholar
  32. Leon-Carrion, J., Garcia-Orza, J., & Perez-Santamaria, F. J. (2004). Development of the inhibitory component of the executive functions in children and adolescents. International Journal of Neuroscience, 114, 1291–1311.PubMedCrossRefGoogle Scholar
  33. Liu, X., Banich, M. T., Jacobson, B. L., & Tanabe, J. L. (2004). Common and distinct neural substrates of attentional control in an integrated Simon and spatial Stroop task as assessed by event-related fMRI. NeuroImage, 22, 1097–1106. doi: 10.1016/j.neuroimage.2004.02.033 PubMedCrossRefGoogle Scholar
  34. MacLeod, C. M. (1991). Half a century of research on the Stroop effect: An integrative review. Psychological Bulletin, 109, 163–203. doi: 10.1037/0033-2909.109.2.163 PubMedCrossRefGoogle Scholar
  35. Mansouri, F. A., Tanaka, K. T., & Buckley, M. (2009). Conflict-induced behavioural adjustment: A clue to the executive functions of the prefrontal cortex. Nature Reviews Neuroscience, 10, 141–152.PubMedCrossRefGoogle Scholar
  36. Mayr, U., Awh, E., & Laurey, P. (2003). Conflict adaptation effects in the absence of executive control. Nature Neuroscience, 6, 450–452.PubMedGoogle Scholar
  37. Nieuwenhuis, S., Stins, J. F., Posthuma, D., Polderman, T. J., Boomsma, D. I., & de Geus, E. J. (2006). Accounting for sequential trial effects in the flanker task: Conflict adaptation or associative priming? Memory & Cognition, 34, 1260–1272.CrossRefGoogle Scholar
  38. Pashler, H., & Baylis, G. C. (1991). Procedural learning: II. Intertrial repetition effects in speeded-choice tasks. Journal of Experimental Psychology: Learning, Memory, and Cognition, 17, 33–48. doi: 10.1037/0278-7393.17.1.33 Google Scholar
  39. Pellicano, A., Iani, C., Rubichi, S., Ricciardelli, P., Borghi, A. M., & Nicoletti, R. (2010). Real life motor training modifies spatial performance: The advantage of being drummers. American Journal of Psychology, 123, 169–179.PubMedCrossRefGoogle Scholar
  40. Proctor, R. W., Miles, J. D., & Baroni, G. (2011). Reaction time distribution analysis of spatial correspondence effects. Psychonomic Bulletin & Review, 18, 242–266. doi: 10.3758/s13423-011-0053-5 CrossRefGoogle Scholar
  41. Proctor, R. W., & Vu, K.-P. L. (2006). Stimulus–response compatibility principle: Data, theory, and application. Boca Raton, FL: Taylor & Francis.Google Scholar
  42. Puccioni, O., & Vallesi, A. (2012). Conflict resolution and adaptation in normal aging: The role of verbal intelligence and cognitive reserve. Psychology and Aging, 27, 1018–1026.PubMedCrossRefGoogle Scholar
  43. Ratcliff, R. (1979). Group reaction time distributions and an analysis of distribution statistics. Psychological Bulletin, 86, 446–461. doi: 10.1037/0033-2909.86.3.446 PubMedCrossRefGoogle Scholar
  44. Ridderinkhof, K. R. (2002). Activation and suppression in conflict tasks: Empirical clarifications through distributional analysis. In W. Prinz & B. Hommel (Eds.), Attention and performance XIX: Common mechanisms in perception and action (pp. 494–519). Oxford, UK: Oxford University Press.Google Scholar
  45. Ridderinkhof, K. R., van der Molen, M. W., Band, P. H., & Bashore, T. R. (1997). Sources of interference from irrelevant information: A developmental study. Journal of Experimental Child Psychology, 65, 315–341.PubMedCrossRefGoogle Scholar
  46. Rubichi, S., & Nicoletti, R. (2006). The Simon effect and handedness: Evidence for a dominant-hand attentional bias in spatial coding. Perception & Psychophysics, 68, 1059–1069. doi: 10.3758/BF03193709 CrossRefGoogle Scholar
  47. Rubichi, S., Nicoletti, R., Iani, C., & Umiltà, C. (1997). The Simon effect occurs relative to the direction of an attention shift. Journal of Experimental Psychology: Human Perception and Performance, 23, 1353–1364. doi: 10.1037/0096-1523.23.5.1353 PubMedGoogle Scholar
  48. Rubichi, S., Nicoletti, R., Pelosi, A., & Umiltà, C. (2004). Right-left prevalence effect with horizontal and vertical effectors. Perception & Psychophysics, 66, 255–263. doi: 10.3758/BF03194877 CrossRefGoogle Scholar
  49. Rubichi, S., Vu, K., Nicoletti, R., & Proctor, R. (2006). Spatial coding in two dimensions. Psychonomic Bulletin & Review, 13, 201–216. doi: 10.3758/BF03193832 CrossRefGoogle Scholar
  50. Rueda, M. R. (2013). Development of attention. In K. Ochsner & S. M. Kosslyn (Eds.), The Oxford handbook of cognitive neuroscience (Core topics, Vol. 1, pp. 296–318). New York, NY: Oxford University Press.Google Scholar
  51. Rueda, M. R., Fan, J., McCandliss, B. D., Halparin, J. D., Gruber, D. B., Pappert Lercari, L., & Posner, M. I. (2004). Development of attentional networks in children. Neuropsychologia, 42, 1029–1040.PubMedCrossRefGoogle Scholar
  52. Scherbaum, S., Fischer, R., Dshemuchadse, M., & Goschke, T. (2011). The dynamics of cognitive control: Evidence for within-trial conflict adaptation from frequency-tagged EEG. Psychophysiology, 48, 591–600. doi: 10.1111/j.1469-8986.2010.01137.x PubMedCrossRefGoogle Scholar
  53. Simon, J. R., & Rudell, A. P. (1967). Auditory S–R compatibility: The effect of an irrelevant cue on information processing. Journal of Applied Psychology, 51, 300–304.PubMedCrossRefGoogle Scholar
  54. Soetens, E., Maetens, K., & Zeischka, P. (2010). Practice-induced and sequential modulations of the Simon effect. Attention, Perception, & Psychophysics, 72, 895–911. doi: 10.3758/APP.72.4.895 CrossRefGoogle Scholar
  55. Spapé, M. M., Band, G. P. H., & Hommel, B. (2011). Compatibility-sequence effects in the Simon task reflect episodic retrieval but not conflict adaptation: Evidence from LRP and N2. Biological Psychology, 88, 116–123.PubMedCrossRefGoogle Scholar
  56. Stins, J. F., Polderman, J. C. T., Boomsma, D. I., & de Geus, E. J. C. (2007). Conditional accuracy in response interference tasks: Evidence from the Eriksen flanker task and the spatial conflict task. Advances in Cognitive Psychology, 3, 389–396.CrossRefGoogle Scholar
  57. Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18, 643–662. doi: 10.1037/0096-3445.121.1.15 CrossRefGoogle Scholar
  58. Stürmer, B., Leuthold, H., Soetens, E., Schröter, H., & Sommer, W. (2002). Control over location-based priming in the Simon task: Behavioral and electrophysiological evidence. Journal of Experimental Psychology: Human Perception and Performance, 28, 1345–1363. doi: 10.1037/0096-1523.28.6.1345 PubMedGoogle Scholar
  59. Umiltà, C., Rubichi, S., & Nicoletti, R. (1999). Facilitation and interference components in the Simon effect. Archives Italiennes de Biologie, 137, 139–149.PubMedGoogle Scholar
  60. van den Wildenberg, W. P. M., & Crone, E. A. (2005). Development of response inhibition and decision-making across childhood: A cognitive neuroscience perspective. In J. R. Marrow (Ed.), Focus on child psychology research (pp. 23–42). Hauppauge, NY: Nova Science.Google Scholar
  61. Verguts, T., & Notebaert, W. (2009). Adaptation by binding: A learning account of cognitive control. Trends in Cognitive Sciences, 13, 252–257. doi: 10.1016/j.tics.2009.02.007 PubMedCrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2014

Authors and Affiliations

  1. 1.Dipartimento di Comunicazione ed EconomiaUniversità di Modena e Reggio EmiliaReggio EmiliaItaly
  2. 2.Dipartimento di Educazione e Scienze UmaneUniversità di Modena e Reggio EmiliaReggio EmiliaItaly

Personalised recommendations