Attention, Perception, & Psychophysics

, Volume 76, Issue 2, pp 270–279 | Cite as

Detecting meaning in RSVP at 13 ms per picture

  • Mary C. Potter
  • Brad Wyble
  • Carl Erick Hagmann
  • Emily S. McCourt
Article

Abstract

The visual system is exquisitely adapted to the task of extracting conceptual information from visual input with every new eye fixation, three or four times a second. Here we assess the minimum viewing time needed for visual comprehension, using rapid serial visual presentation (RSVP) of a series of six or 12 pictures presented at between 13 and 80 ms per picture, with no interstimulus interval. Participants were to detect a picture specified by a name (e.g., smiling couple) that was given just before or immediately after the sequence. Detection improved with increasing duration and was better when the name was presented before the sequence, but performance was significantly above chance at all durations, whether the target was named before or only after the sequence. The results are consistent with feedforward models, in which an initial wave of neural activity through the ventral stream is sufficient to allow identification of a complex visual stimulus in a single forward pass. Although we discuss other explanations, the results suggest that neither reentrant processing from higher to lower levels nor advance information about the stimulus is necessary for the conscious detection of rapidly presented, complex visual information.

Keywords

Picture perception Feedforward processing Attentional set Conscious perception Conceptual processing 

Supplementary material

13414_2013_605_MOESM1_ESM.doc (85 kb)
ESM 1(DOC 85 kb)

References

  1. Bacon-Macé, N., Kirchner, H., Fabre-Thorpe, M., & Thorpe, S. J. (2007). Effects of task requirements on rapid natural scene processing: From common sensory encoding to distinct decisional mechanisms. Journal of Experimental Psychology: Human Perception and Performance, 33, 1013–1026. doi:10.1037/0096-1523.33.5.1013 PubMedGoogle Scholar
  2. Bar, M., Kassam, K. S., Ghuman, A. S., Boshyan, J., Schmid, A. M., Dale, A. M., & Halgren, E. (2006). Top-down facilitation of visual recognition. Proceedings of the National Academy of Sciences, 103, 449–454. doi:10.1073/pnas.0507062103 CrossRefGoogle Scholar
  3. Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10, 433–436. doi:10.1163/156856897X00357 CrossRefPubMedGoogle Scholar
  4. Crouzet, S. M., Kirchner, H., & Thorpe, S. J. (2010). Fast saccades toward faces: Face detection in just 100 ms. Journal of Vision, 10(4):16, 1–17. doi:10.1167/10.4.16 Google Scholar
  5. Cukur, T., Nishimoto, S., Huth, A. G., & Gallant, J. I. (2013). Attention during natural vision warps semantic representation across the human brain. Nature Neuroscience, 16, 763–770.PubMedCentralCrossRefPubMedGoogle Scholar
  6. Dehaene, S., Kergsberg, M., & Changeux, J. P. (1998). A neuronal model of a global workspace in effortful cognitive tasks. Proceedings of the National Academy of Sciences, 95, 14529–14534.CrossRefGoogle Scholar
  7. Dehaene, S., & Naccache, L. (2001). Towards a cognitive neuroscience of consciousness: Basic evidence and a workspace framework. Cognition, 79, 1–37. doi:10.1016/S0010-0277(00)00123-2 CrossRefPubMedGoogle Scholar
  8. Dehaene, S., Naccache, L., Cohen, L., LeBihan, D., Mangin, J. F., Poline, J.-B., & Rivière, D. (2001). Cerebral mechanisms of word masking and unconscious repetition priming. Nature Neuroscience, 4, 752–758. doi:10.1038/89551 CrossRefPubMedGoogle Scholar
  9. Dehaene, S., Sergent, C., & Changeux, J.-P. (2003). A neuronal network model linking subjective reports and objective physiological data during conscious perception. Proceedings of the National Academy of Sciences, 100, 8520–8525.CrossRefGoogle Scholar
  10. Del Cul, A., Baillet, S., & Dehaene, S. (2007). Brain dynamics underlying the nonlinear threshold for access to consciousness. PLoS Biology, 5, 2408–2423.Google Scholar
  11. DiCarlo, J. J., Zoccolan, D., & Rust, N. C. (2012). How does the brain solve visual object recognition? Neuron, 73, 415–434. doi:10.1016/j.neuron.2012.01.010 PubMedCentralCrossRefPubMedGoogle Scholar
  12. Di Lollo, V. (2012). The feature-binding problem is an ill-posed problem. Trends in Cognitive Sciences, 16, 317–321.CrossRefPubMedGoogle Scholar
  13. Di Lollo, V., Enns, J. T., & Rensink, R. A. (2000). Competition for consciousness among visual events: The psychophysics of reentrant visual pathways. Journal of Experimental Psychology: General, 129, 481–507. doi:10.1037/0096-3445.129.4.481 CrossRefGoogle Scholar
  14. Enns, J. T., & Di Lollo, V. (2000). What’s new in visual masking? Trends in Cognitive Sciences, 4, 345–352. doi:10.1016/S1364-6613(00)01520-5 CrossRefPubMedGoogle Scholar
  15. Evans, K. K., Horowitz, T. S., & Wolfe, J. W. (2011). When categories collide: Accumulation of information about multiple categories in rapid scene perception. Psychological Science, 22, 739–746. doi:10.1177/0956797611407930 PubMedCentralCrossRefPubMedGoogle Scholar
  16. Fabre-Thorpe, M. (2011). The characteristics and limits of rapid visual categorization. Frontiers in Psychology, 2, 243. doi:10.3389/fpsyg.2011.00243 PubMedCentralCrossRefPubMedGoogle Scholar
  17. Forster, K. I., & Davis, C. (1984). Repetition priming and frequency attenuation in lexical access. Journal of Experimental Psychology: Learning, Memory, and Cognition, 10, 680–698. doi:10.1037/0278-7393.10.4.680 Google Scholar
  18. Hochstein, S., & Ahissar, M. (2002). View from the top: Hierarchies and reverse hierarchies in the visual system. Neuron, 36, 791–804.CrossRefPubMedGoogle Scholar
  19. Hung, C. P., Kreiman, G., Poggio, T., & DiCarlo, J. J. (2005). Fast readout of object identity from macaque inferior temporal cortex. Science, 310, 863–866.CrossRefPubMedGoogle Scholar
  20. Intraub, H. (1981). Rapid conceptual identification of sequentially presented pictures. Journal of Experimental Psychology: Human Perception and Performance, 7, 604–610. doi:10.1037/0096-1523.7.3.604 Google Scholar
  21. Intraub, H. (1984). Conceptual masking: The effects of subsequent visual events on memory for pictures. Journal of Experimental Psychology: Learning, Memory, and Cognition, 10, 115–125. doi:10.1037/0278-7393.10.1.115 PubMedGoogle Scholar
  22. Keysers, C., Xiao, D.-K., Földiák, P., & Perrett, D. I. (2001). The speed of sight. Journal of Cognitive Neuroscience, 13, 90–101.CrossRefPubMedGoogle Scholar
  23. Keysers, C., Xiao, D.-K., Földiák, P., & Perrett, D. I. (2005). Out of sight but not out of mind: The neurophysiology of iconic memory in the superior temporal sulcus. Cognitive Neuropsychology, 22, 316–332.CrossRefPubMedGoogle Scholar
  24. Kovacs, G., Vogels, R., & Orban, G. A. (1995). Cortical correlate of backward masking. Proceedings of the National Academy of Sciences, 92, 5587–5591.CrossRefGoogle Scholar
  25. Lamme, V. A. F. (2006). Towards a true neural stance on consciousness. Trends in Cognitive Sciences, 10, 494–501. doi:10.1016/j.tics.2006.09.001 CrossRefPubMedGoogle Scholar
  26. Lamme, V. A. F., & Roelfsema, P. R. (2000). The distinct modes of vision offered by feedforward and recurrent processing. Trends in Neurosciences, 23, 571–579. doi:10.1016/S0166-2236(00)01657-X CrossRefPubMedGoogle Scholar
  27. Liu, H., Agam, Y., Madsen, J. R., & Kreiman, G. (2009). Timing, timing, timing: Fast decoding of object information from intracranial field potentials in human visual cortex. Neuron, 62, 281–290.PubMedCentralCrossRefPubMedGoogle Scholar
  28. Llinás, R., Ribary, U., Contreras, D., & Pedroarena, C. (1998). The neuronal basis for consciousness. Philosophical Transactions of the Royal Society B, 353, 1841–1849.CrossRefGoogle Scholar
  29. Loftus, G. R., Hanna, A. M., & Lester, L. (1988). Conceptual masking: How one picture captures attention from another picture. Cognitive Psychology, 20, 237–282. doi:10.1016/0010-0285(88)90020-5 CrossRefPubMedGoogle Scholar
  30. Loschky, L. C., Hansen, B. C., Sethi, A., & Pydimarri, T. N. (2010). The role of higher order image statistics in masking scene gist recognition. Attention, Perception, & Psychophysics, 72, 427–444. doi:10.3758/APP.72.2.427 CrossRefGoogle Scholar
  31. Macknik, S. L., & Martinez-Conde, S. (2007). The role of feedback in visual masking and visual processing. Advances in Cognitive Psychology, 3, 125–152.PubMedCentralCrossRefGoogle Scholar
  32. McKeeff, T. J., Remus, D. A., & Tong, F. (2007). Temporal limitations in object processing across the human ventral visual pathway. Journal of Neurophysiology, 98, 382–393.CrossRefPubMedGoogle Scholar
  33. Moore, C. M., & Wolfe, J. M. (2001). Getting beyond the serial/parallel debate in visual search: A hybrid approach. In K. Shapiro (Ed.), The limits of attention: Temporal constraints on human information processing (pp. 178–198). Oxford, UK: Oxford University Press.CrossRefGoogle Scholar
  34. Peelen, M. V., & Kastner, S. (2011). A neural basis for real-world visual search in human occipitotemporal cortex. Proceedings of the National Academy of Sciences, 108, 12125–12130.CrossRefGoogle Scholar
  35. Perrett, D., Hietanen, J., Oram, M., & Benson, P. (1992). Organization and functions of cells responsive to faces in the temporal cortex. Philosophical Transactions of the Royal Society B, 335, 23–30.CrossRefGoogle Scholar
  36. Potter, M. C. (1975). Meaning in visual search. Science, 187, 965–966. doi:10.1126/science.1145183 CrossRefPubMedGoogle Scholar
  37. Potter, M. C. (1976). Short-term conceptual memory for pictures. Journal of Experimental Psychology: Human Learning and Memory, 2, 509–522.Google Scholar
  38. Potter, M. C., & Levy, E. I. (1969). Recognition memory for a rapid sequence of pictures. Journal of Experimental Psychology, 81, 10–15. doi:10.1037/h0027470 CrossRefPubMedGoogle Scholar
  39. Potter, M. C., Staub, A., Rado, J., & O’Connor, D. H. (2002). Recognition memory for briefly-presented pictures: The time course of rapid forgetting. Journal of Experimental Psychology: Human Perception and Performance, 28, 1163–1175. doi:10.1037/0096-1523.28.5.1163 PubMedGoogle Scholar
  40. Serre, T., Kreiman, G., Kouh, M., Cadieu, C., Knoblich, U., & Poggio, T. (2007a). A quantitative theory of immediate visual recognition. Progress in Brain Research, 165, 33–56.CrossRefPubMedGoogle Scholar
  41. Serre, T., Oliva, A., & Poggio, T. (2007b). A feedforward architecture accounts for rapid categorization. Proceedings of the National Academy of Sciences, 104, 6424–6429.CrossRefGoogle Scholar
  42. Sugase, Y., Yamane, S., Ueno, S., & Kawano, K. (1999). Global and fine information coded by single neurons in the temporal visual cortex. Nature, 400, 869–873.CrossRefPubMedGoogle Scholar
  43. Thorpe, S., & Fabre-Thorpe, M. (2001). Seeking categories in the brain. Science, 291, 260–263.CrossRefPubMedGoogle Scholar
  44. Thorpe, S., Fize, D., & Marlot, C. (1996). Speed of processing in the human visual system. Nature, 381, 520–522.CrossRefPubMedGoogle Scholar
  45. Tononi, G., & Koch, C. (2008). The neural correlates of consciousness: An update. Annals of the New York Academy of Sciences, 1124, 239–261.CrossRefPubMedGoogle Scholar
  46. Wolfe, J. M. (2003). Moving towards solutions to some enduring controversies in visual search. Trends in Cognitive Science, 7, 70–76.Google Scholar

Copyright information

© Psychonomic Society, Inc. 2014

Authors and Affiliations

  • Mary C. Potter
    • 1
    • 3
  • Brad Wyble
    • 2
  • Carl Erick Hagmann
    • 1
  • Emily S. McCourt
    • 1
  1. 1.Department of Brain and Cognitive SciencesMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Department of PsychologyPennsylvania State UniversityCollege ParkUSA
  3. 3.Department of Brain and Cognitive Sciences46-4125 Massachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations