Advertisement

Attention, Perception, & Psychophysics

, Volume 76, Issue 7, pp 1954–1961 | Cite as

Does stimulus complexity determine whether working memory storage relies on prefrontal or sensory cortex?

  • Tyler D. BancroftEmail author
  • William E. Hockley
  • Philip Servos
Article

Abstract

Traditionally, working and short-term memory (WM/STM) have been believed to rely on storage systems located in prefrontal cortex (PFC). However, recent experimental and theoretical efforts have suggested that, in many cases, sensory or other task-relevant cortex is the actual storage substrate for WM/STM. What factors determine whether a given WM/STM task relies on PFC or sensory cortex? In the present article, we outline recent experimental findings and suggest that the dimensionality or complexity of the to-be-remembered property or properties of a stimulus can be a determining factor.

Keywords

Working memory Short-term memory Complexity Prefrontal cortex Sensory cortex 

Notes

Acknowledgements

We thank Britt Anderson and several anonymous reviewers for their insightful comments on the manuscript. The present research was supported by grants from the National Sciences and Engineering Research Council to W.E.H. and P.S. and an Ontario Graduate Scholarship to T.D.B.

References

  1. Acheson, D. J., Hamidi, M., Binder, J. R., & Postle, B. R. (2011). A common neural substrate for language production and verbal working memory. Journal of Cognitive Neuroscience, 23, 1358-1367.PubMedCrossRefPubMedCentralGoogle Scholar
  2. Anderson, D. E., Ester, E. F., Serences, J. T., & Awh, E. (2013). Attending multiple items decreases the selectivity of population responses in human primary visual cortex. Journal of Neuroscience, 33, 9273-9282.PubMedCrossRefPubMedCentralGoogle Scholar
  3. Baddeley, A. (2010). Working memory. Current Biology, 20, R136-R140.PubMedCrossRefGoogle Scholar
  4. Bancroft, T. D., Hockley, W. E., & Servos, P. (2013). Irrelevant sensory stimuli interfere with working memory storage: Evidence from a computational model of prefrontal neurons. Cognitive, Affective, & Behavioral Neuroscience, 13, 23-34.CrossRefGoogle Scholar
  5. Barrouillet, P., Portrat, S., & Camos, V. (2011). On the law relating processing to storage in working memory. Psychological Review, 118, 175-192.PubMedCrossRefGoogle Scholar
  6. Christophel, T. B., Hebart, M. N., Haynes, J.-D. (2012). Decoding the contents of visual short-term memory from human visual and parietal cortex. Journal of Neuroscience, 32, 12983-12989.PubMedCrossRefGoogle Scholar
  7. Constantinidis, C., & Steinmetz, M. A. (1996). Neuronal activity in posterior parietal area 7a during the delay periods of a spatial memory task. Journal of Neurophysiology, 76, 1352-1355.PubMedGoogle Scholar
  8. Conway, R. A., Kane, M. J., Bunting, M. F., Hambrick, D. Z., Wilhelm, O., & Engle, R. W. (2005). Working memory span tasks: A methodological review and user’s guide. Psychonomic Bulletin & Review, 12, 769-786.CrossRefGoogle Scholar
  9. Cowan, N. (1999). An embedded-processes model of working memory. In A. Miyake & P. Shah (Eds.), Models of working memory: Mechanisms of active maintenance and executive control (pp. 62-101). Cambridge University Press.Google Scholar
  10. Duncan, J. (2001). An adaptive coding model of neural function in prefrontal cortex. Nature Reviews Neuroscience, 2, 820-829.PubMedCrossRefGoogle Scholar
  11. D’Esposito, M., Detre, J. A., Alsop, D. C., Shin, R. K., Atlas, S., & Grossman, M. (1995). The neural basis of the central executive system of working memory. Nature, 378, 279-281.PubMedCrossRefGoogle Scholar
  12. Duncan, J., & Miller, E. K. (2002). Cognitive focus through adaptive neural coding in the primate prefrontal cortex. In Principles of Frontal Lobe Function, Stuss, D. T., & Knight, R. T. (eds.). Oxford: Oxford University Press.Google Scholar
  13. Emrich, S. M., Riggall, A. C., LaRocque, J. J., & Postle, B. R. (2013). Distributed patterns of activity in sensory cortex reflect the precision of multiple items maintained in visual short-term memory. Journal of Neuroscience, 33, 6516-6523.PubMedCrossRefPubMedCentralGoogle Scholar
  14. Engle, R. W., Tuholski, S. W., Laughlin, J. E., & Conway, A. R. A. (1999). Working memory, short-term memory, and general fluid intelligence: A latent-variable approach. Journal of Experimental Psychology: General, 128, 309-331.CrossRefGoogle Scholar
  15. Ester, E. F., Anderson, D. E., Serences, J. T., & Awh, E. (2013). A neural measure of precision in visual working memory. Journal of Cognitive Neuroscience, 25, 754-761.PubMedCrossRefPubMedCentralGoogle Scholar
  16. Freedman, D. J., Riesenhuber, M., Poggio, T., Miller, E. K. (2001). Categorical representation of visual stimuli in the primate prefrontal cortex. Science, 291, 312-316.PubMedCrossRefGoogle Scholar
  17. Fuster, J. M. (2003). More than working memory rides on long-term memory. Behavioral and Brain Sciences, 26, 737.CrossRefGoogle Scholar
  18. Harris, J. A., Miniussi, C., Harris, I. M., & Diamond, M. E. (2002). Transient storage of a tactile memory trace in primary somatosensory cortex. Journal of Neuroscience, 22, 8720-8725.PubMedGoogle Scholar
  19. Harrison, S. A., & Tong, F. (2009). Decoding reveals the contents of visual working memory in early visual areas. Nature, 458, 632-635.PubMedCrossRefPubMedCentralGoogle Scholar
  20. Hayden, B. Y., & Gallant, J. L. (2013). Working memory and decision process in visual area V4. Frontiers in Decision Neuroscience, 7, 18.Google Scholar
  21. Konstantinou, N., & Lavie, N. (2013). Dissociable roles of different types of working memory load in visual detection. Journal of Experimental Psychology: Human Perception and Performance.Google Scholar
  22. Lee, S.-H., Kravitz, D. J., & Baker, C. I. (2013). Goal-dependent dissociation of visual and prefrontal cortices during working memory. Nature Neuroscience, 16, 997-999.PubMedCrossRefPubMedCentralGoogle Scholar
  23. Lemus, L., Hernández, A., & Romo, R. (2009). Neural encoding of auditory discrimination in ventral premotor cortex. Proceedings of the National Academy of Sciences, 106, 14640-14645.CrossRefGoogle Scholar
  24. Linden, D. E. J., Oosterhof, N. N., Klein, C., & Downing, P. E. (2012). Mapping brain activation and information during category-specific visual working memory. Journal of Neurophysiology, 107, 628-639.PubMedCrossRefPubMedCentralGoogle Scholar
  25. Linke, A. C., Vicente-Grabovetsky, A., & Cusack, R. (2011). Stimulus-specific suppression preserves information in auditory short-term memory. Proceedings of the National Academy of Sciences, 108, 12961-12966.CrossRefGoogle Scholar
  26. Menning, H., Roberts, L. E., & Pantev, C. (2000). Plastic changes in the auditory cortex induced by intensive frequency discrimination training. NeuroReport, 11, 817-822.PubMedCrossRefGoogle Scholar
  27. Postle, B. R. (2006). Working memory as an emergent property of the mind and brain. Neuroscience, 139, 23-38.PubMedCrossRefPubMedCentralGoogle Scholar
  28. Raabe, M., Fischer, V., Bernhardt, D., & Greenlee, M. W. (2013). Neural correlates of spatial working memory load in a delayed match-to-sample saccade task. NeuroImage, 71, 84-91.PubMedCrossRefGoogle Scholar
  29. Riggall, A. C., & Postle, B. R. (2012). The relationship between working memory storage and elevated activity as measured with functional magnetic resonance imaging. Journal of Neuroscience, 32, 12990-12998.PubMedCrossRefPubMedCentralGoogle Scholar
  30. Romo, R., & Salinas, E. (2003). Flutter discrimination: neural codes, perception, memory and decision making. Nature Reviews Neuroscience, 4, 203-218.PubMedCrossRefGoogle Scholar
  31. Romo, R., Brody, C. D., Hernández, A., & Lemus, L. (1999). Neuronal correlates of parametric working memory in the prefrontal cortex. Nature, 399, 470-473.PubMedCrossRefGoogle Scholar
  32. Ruchkin, D. S., Grafman, J., Cameron, K., & Berndt, D. S. (2003). Working memory retention systems: A state of activated long-term memory. Behavioral and Brain Sciences, 26, 709-777.PubMedGoogle Scholar
  33. Sakurai, Y., Takahashi, S., & Inoue, M. (2004). Stimulus duration in working memory is represented by neuronal activity in the monkey prefrontal cortex. European Journal of Neuroscience, 20, 1069-1080.PubMedCrossRefGoogle Scholar
  34. Serences, J. T., Ester, E. F., Vogel, E. K., & Awh, E. (2009). Stimulus-specific delay activity in human primary visual cortex. Psychological Science, 20, 207-214.PubMedCrossRefPubMedCentralGoogle Scholar
  35. Sereno, M. I., Pitzalis, S., & Martinez, A. (2001). Mapping of contralateral space in retinotopic coordinates by a parietal cortical area in humans. Science, 294, 1350-1354.PubMedCrossRefGoogle Scholar
  36. Siegel, M., Warden, M. R., & Miller, E. K. (2009). Phase-dependent neuronal coding of objects in short-term memory. Proceedings of the National Academy of Sciences, 106, 21341-21346.CrossRefGoogle Scholar
  37. Spitzer, B., & Blankenburg, F. (2011). Stimulus-dependent EEG activity reflects internal updating of tactile working memory in humans. Proceedings of the National Academy of Sciences, 108, 8444-8449.CrossRefGoogle Scholar
  38. Spitzer, B., & Blankenburg, F. (2012). Supramodal parametric working memory processing in humans. Journal of Neuroscience, 32, 3287-3295.PubMedCrossRefGoogle Scholar
  39. Spitzer, B., Wacker, E., & Blankenburg, F. (2010). Oscillatory correlates of vibrotactile frequency processing in human working memory. Journal of Neuroscience, 30, 4496-4502.PubMedCrossRefGoogle Scholar
  40. Spitzer, B., Gloel, M., Schmidt, T. T., & Blankenburg, F. (2013). Working memory coding of analog stimulus properties in the human prefrontal cortex. Cerebral Cortex.Google Scholar
  41. Tong, F., & Pratte, M. S. (2012). Decoding patterns of human brain activity. Annual Review of Psychology, 63, 483-509.PubMedCrossRefGoogle Scholar
  42. Weinberger, N. M. (2004). Specific long-term memory traces in primary auditory cortex. Nature Reviews Neuroscience, 5, 279-290.PubMedCrossRefPubMedCentralGoogle Scholar
  43. Wilson, F. A., Scalaidhe, O. S. P., & Goldman-Rakic, P. S. (1993). Dissociation of object and spatial processing domains in primate prefrontal cortex. Science, 260, 1955-1958.PubMedCrossRefGoogle Scholar
  44. Zhou, Y. D., & Fuster, J. M. (1996). Mnemonic neuronal activity in somatosensory cortex. Proceedings of the National Academy of Sciences, 93, 10533-10537.CrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2014

Authors and Affiliations

  • Tyler D. Bancroft
    • 1
    Email author
  • William E. Hockley
    • 1
  • Philip Servos
    • 1
  1. 1.Department of PsychologyWilfrid Laurier UniversityWaterlooCanada

Personalised recommendations