Attention, Perception, & Psychophysics

, Volume 76, Issue 2, pp 367–382 | Cite as

Early top-down control over saccadic target selection: Evidence from a systematic salience difference manipulation

  • Harriet GoschyEmail author
  • A. Isabel Koch
  • Hermann J. Müller
  • Michael Zehetleitner


Previous research on the contribution of top-down control to saccadic target selection has suggested that eye movements, especially short-latency saccades, are primarily salience driven. The present study was designed to systematically examine top-down influences as a function of time and relative salience difference between target and distractor. Observers performed a saccadic selection task, requiring them to make an eye movement to an orientation-defined target, while ignoring a color-defined distractor. The salience of the distractor was varied (five levels), permitting the percentage of target and distractor fixations to be analyzed as a function of the salience difference between the target and distractor. This analysis revealed the same pattern of results for both the overall and the short-latency saccades: When the target and distractor were of comparable salience, the vast majority of saccades went directly to the target; even distractors somewhat more salient than the target led to significantly fewer distractor, as compared with target, fixations. To quantify the amount of top-down control applied, we estimated the point of equal selection probability for the target and distractor. Analyses of these estimates revealed that, to be selected with equal probability to the target, a distractor had to have a considerably greater bottom-up salience, as compared with the target. This difference suggests a strong contribution of top-down control to saccadic target selection—even for the earliest saccades.


Attentional capture Eye movements Visual attention 



This research was supported by grants from DFG Excellence Cluster EC 142 ‘CoTeSys’ (H. J. M and M. Z.), the DFG research group FOR480 (H. J. M.), DFG grant ZE 887/3-1 (M. Z. and H. J. M.), and the German–Israeli Foundation for Scientific Research and Development grant 1130–158.4 (M. Z. and H. J. M.).


  1. Awh, E., Belopolsky, A. V., & Theeuwes, J. (2012). Top-down versus bottom-up attentional control: A failed theoretical dichotomy. Trends in Cognitive Sciences, 16, 437–443.PubMedCentralCrossRefPubMedGoogle Scholar
  2. Bacon, W. F., & Egeth, H. E. (1994). Overriding stimulus driven attentional capture. Perception & Psychophysics, 55, 485–496.CrossRefGoogle Scholar
  3. Born, S., Kerzel, D., & Theeuwes, J. (2011). Evidence for a dissociation between the control of oculomotor capture and disengagement. Experimental Brain Research, 208, 621–631.PubMedCentralCrossRefPubMedGoogle Scholar
  4. de Vries, J. P., Hooge, I. T. C., Wiering, M. A., & Verstraten, F. A. J. (2011). How longer saccade latencies lead to a competition for salience. Psychological Science, 22, 916–923.CrossRefPubMedGoogle Scholar
  5. Deubel, H., & Schneider, W. X. (1996). Saccade target selection and object recognition: Evidence for a common attentional mechanism. Vision Research, 36, 1827–1837.CrossRefPubMedGoogle Scholar
  6. Eimer, M. (1996). The N2pc component as an indicator of attentional selectivity. Electroencephalography and Clinical Neurophysiology, 99, 225–234.CrossRefPubMedGoogle Scholar
  7. Folk, C. L., Remington, R. W., & Johnston, J. C. (1992). Involuntary covert orienting is contingent on attentional control settings. Journal of Experimental Psychology: Human Perception and Performance, 18, 1030–1044.PubMedGoogle Scholar
  8. Forster, S., & Lavie, N. (2008). Attentional capture by entirely irrelevant distractors. Visual Cognition, 16, 200–214.CrossRefGoogle Scholar
  9. Found, A., & Müller, H. J. (1996). Searching for unknown feature targets on more than one dimension: Investigating a "dimension-weighting" account. Perception & Psychophysics, 58, 88–101.CrossRefGoogle Scholar
  10. Gao, D., Mahadevan, V., & Vasconcelos, N. (2008). On the plausibility of the discriminant center-surround hypothesis for visual saliency. Journal of Vision, 8, 1–18.CrossRefPubMedGoogle Scholar
  11. Geyer, T., Müller, H. J., & Krummenacher, J. (2008). Expectancies modulate attentional capture by salient color singletons. Vision Research, 48, 1315–1326.CrossRefPubMedGoogle Scholar
  12. Hickey, C., van Zoest, W., & Theeuwes, J. (2010). The time course of exogenous and endogenous control of covert attention. Experimental Brain Research, 201, 789–796.PubMedCentralCrossRefPubMedGoogle Scholar
  13. Hunt, A. R., von Mühlenen, A., & Kingstone, A. (2007). The time course of attentional and oculomotor capture reveals a common cause. Journal of Experimental Psychology: Human Perception and Performance, 33, 271–284.PubMedGoogle Scholar
  14. Itti, L., & Koch, C. (2000). A saliency-based search mechanism for overt and covert shifts of visual attention. Vision Research, 40, 1489–1506.CrossRefPubMedGoogle Scholar
  15. Kowler, E., Anderson, E., Dosher, B., & Blaser, E. (1995). The role of attention in the programming of saccades. Vision Research, 35, 1897–1916.CrossRefPubMedGoogle Scholar
  16. Krummenacher, J., Müller, H. J., Zehetleitner, M., & Geyer, T. (2009). Dimension- and space-based intertrial effects in visual pop-out search: Modulation by task demands for focal-attentional processing. Psychological Research, 73, 186–197.CrossRefPubMedGoogle Scholar
  17. Luck, S. J., & Hillyard, S. A. (1994). Electrophysiological correlates of feature analysis during visual search. Psychophysiology, 31, 291–308.CrossRefPubMedGoogle Scholar
  18. Maljkovic, V., & Nakayama, K. (1996). Priming of pop-out: II. The role of position. Perception & Psychophysics, 58, 977–991.CrossRefGoogle Scholar
  19. Markowitz, D. A., Shewcraft, R. A., Wong, Y. T., & Pesaran, B. (2011). Competition for visual selection in the oculomotor system. Journal of Neuroscience, 31, 9298–9306.PubMedCentralCrossRefPubMedGoogle Scholar
  20. Müller, H. J., Geyer, T., Zehetleitner, M., & Krummenacher, J. (2009). Attentional capture by salient color singleton distractors is modulated by top-down dimensional set. Journal of Experimental Psychology: Human Perception and Performance, 35, 1–16.PubMedGoogle Scholar
  21. Müller, H. J., Heller, D., & Ziegler, J. (1995). Visual search for singleton feature targets within and across feature dimensions. Perception & Psychophysics, 57, 1–17.CrossRefGoogle Scholar
  22. Müller, H. J., & Krummenacher, J. (2006). Locus of dimension weighting: Preattentive or postselective? Visual Cognition, 14, 490–513.CrossRefGoogle Scholar
  23. Müller, H. J., Reimann, B., & Krummenacher, J. (2003). Visual search for singleton feature targets across dimensions: Stimulus and expectancy-driven effects in dimensional weighting. Journal of Experimental Psychology: Human Perception and Performance, 29, 1021–1035.PubMedGoogle Scholar
  24. Müller, H. J., Töllner, T., Zehetleitner, M., Geyer, T., Rangelov, D., & Krummenacher, J. (2010). Dimension-based attention modulates feed-forward visual processing. Acta Psychologica, 135, 117–122.CrossRefPubMedGoogle Scholar
  25. Navalpakkam, V., & Itti, L. (2005). Modeling the influence of task on attention. Vision Research, 45, 205–231.CrossRefPubMedGoogle Scholar
  26. Nordfang, M., Dyrholm, M., & Bundesen, C. (2013). Identifying bottom-up and top-down components of attentional weight by experimental analysis and computational modeling. Journal of Experimental Psychology: General, 142, 510–535.CrossRefGoogle Scholar
  27. Pinto, Y., Olivers, C. N. L., & Theeuwes, J. (2005). Target uncertainty does not lead to more distraction by singletons: Intertrial priming does. Perception & Psychophysics, 67, 1354–1361.CrossRefGoogle Scholar
  28. Reutter, D., & Zehetleitner, M. (2012). Experiment Toolbox for psychophysical experiments under MATLAB [].
  29. Schütz, A. C., Trommershäser, J., & Gegenfurtner, K. R. (2012). Dynamic integration of information about salience and value for saccadic eye movements. Proceedings of the National Academy of Sciences of the United States of America, 109, 7547–7552.PubMedCentralCrossRefPubMedGoogle Scholar
  30. Siebold, A., van Zoest, W., & Donk, M. (2011). Oculomotor evidence for top-down control following the initial saccade. PloS ONE, 6, e23552.PubMedCentralCrossRefPubMedGoogle Scholar
  31. Siebold, A., van Zoest, W., Meeter, M., & Donk, M. (in press). In defense of the salience map: Salience rather than visibility determines selection. Journal of Experimental Psychology: Human Perception and Performance.Google Scholar
  32. Spering, M., Montagnini, A., & Gegenfurtner, K. R. (2008). Competition between color and luminance for target selection in smooth pursuit and saccadic eye movements. Journal of Vision, 8, 1–19.CrossRefPubMedGoogle Scholar
  33. Theeuwes, J. (1992). Perceptual selectivity for color and form. Perception & Psychophysics, 51, 599–606.CrossRefGoogle Scholar
  34. Theeuwes, J. (2010). Top-down and bottom-up control of visual selection. Acta Psychologica, 135, 77–99.CrossRefPubMedGoogle Scholar
  35. Kramer, A. F., Theeuwes, J., & Atchley, P. (2000). On the time course of top-down and bottom-up control of visual attention. In S. Monsell & J. Driver (Eds.), Control of Cognitive Processes: Attention and Performance XVIII (pp. 105–124). Cambridge, MA: MIT Press.Google Scholar
  36. Töllner, T., Zehetleitner, M., Gramann, K., & Müller, H. J. (2011). Stimulus saliency modulates pre-attentive processing speed in human visual cortex. PloS ONE, 6, e16276.PubMedCentralCrossRefPubMedGoogle Scholar
  37. Treisman, A. (1988). Features and objects: The fourteenth Bartlett memorial lecture. The Quarterly Journal of Experimental Psychology: Section A, 40, 201–237.CrossRefGoogle Scholar
  38. van Zoest, W., & Donk, M. (2005). The effects of salience on saccadic target selection. Visual Cognition, 12, 353–375.CrossRefGoogle Scholar
  39. van Zoest, W., & Donk, M. (2006). Saccadic target selection as a function of time. Spatial Vision, 19, 61–76.CrossRefPubMedGoogle Scholar
  40. van Zoest, W., & Donk, M. (2008). Goal driven modulation as a function of time in saccadic target selection. Quarterly Journal of Experimental Psychology, 61, 1553–1572.CrossRefGoogle Scholar
  41. van Zoest, W., Donk, M., & Theeuwes, J. (2004). The role of stimulus driven and goal driven control in saccadic visual selection. Journal of Experimental Psychology: Human Perception and Performance, 30, 746–759.PubMedGoogle Scholar
  42. Wolfe, J. M. (1994). Guided search 2.0 - A revised model of visual search. Psychonomic Bulletin & Review, 1, 202–238.CrossRefGoogle Scholar
  43. Wolfe, J. M. (1998). Visual search. In H. Pashler (Ed.), Attention (pp. 17–73). East Sussex, UK: Psychology Press.Google Scholar
  44. Wykowska, A., Schubö, A., Hommel, B. (2009). How you move is what you see: Action planning biases selection in visual search. Journal of Experimental Psychology: Human Perception and Performance, 35, 1755–1769.Google Scholar
  45. Wykowska, A., & Schubö, A. (2012). Action intentions modulate allocation of visual attention: Electrophysiological evidence. Frontiers in Psychology, 3, 379.PubMedCentralPubMedGoogle Scholar
  46. Zehetleitner, M., Goschy, H., & Müller, H. J. (2012). Top-down control of attention: It's gradual, practice-dependent, and hierarchically organized. Journal of Experimental Psychology: Human Perception and Performance, 38, 941–957.PubMedGoogle Scholar
  47. Zehetleitner, M., Hegenloh, M., & Müller, H. J. (2011). Visually guided pointing movements are driven by the salience map. Journal of Vision, 11, 1–18.CrossRefGoogle Scholar
  48. Zehetleitner, M., Koch, A. I., Goschy, H., & Müller, H. J. (2013). Salience-based selection: Attentional capture by distractors less salient than the target. PLoS ONE, 8, e52595.PubMedCentralCrossRefPubMedGoogle Scholar
  49. Zehetleitner, M., Krummenacher, J., Geyer, T., Hegenloh, M., & Müller, H. J. (2011). Dimension intertrial and cueing effects in localization: Support for pre-attentively weighted one-route models of saliency. Attention, Perception, & Psychophysics, 73, 349–363.CrossRefGoogle Scholar
  50. Zehetleitner, M., Krummenacher, J., & Müller, H. J. (2009). The detection of feature singletons defined in two dimensions is based on salience summation, rather than on serial exhaustive or interactive race architectures. Attention, Perception, & Psychophysics, 71, 1739–1759.CrossRefGoogle Scholar
  51. Zehetleitner, M., Proulx, M. J., & Müller, H. J. (2009). Additional-singleton interference in efficient visual search: A common salience route for detection and compound tasks. Attention, Perception, & Psychophysics, 71, 1760–1770.CrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2013

Authors and Affiliations

  • Harriet Goschy
    • 1
    • 2
    Email author
  • A. Isabel Koch
    • 1
    • 2
  • Hermann J. Müller
    • 1
    • 3
  • Michael Zehetleitner
    • 1
  1. 1.Department of PsychologyLudwig-Maximilians-Universität MünchenMunichGermany
  2. 2.Graduate School of Systemic NeurosciencesPlanegg-MartinsriedGermany
  3. 3.Birkbeck CollegeUniversity of LondonLondonUK

Personalised recommendations