Attention, Perception, & Psychophysics

, Volume 76, Issue 4, pp 1136–1150 | Cite as

Processing load impairs coordinate integration for the localization of touch



To perform an action toward a touch, the tactile spatial representation must be transformed from a skin-based, anatomical reference frame into an external reference frame. Evidence suggests that, after transformation, both anatomical and external coordinates are integrated for the location estimate. The present study investigated whether the calculation and integration of external coordinates are automatic processes. Participants made temporal order judgments (TOJs) of two tactile stimuli, one applied to each hand, in crossed and uncrossed postures. The influence of the external coordinates of touch was indicated by the performance difference between crossed and uncrossed postures, referred to as the crossing effect. To assess automaticity, the TOJ task was combined with a working memory task that varied in difficulty (size of the working memory set) and quality (verbal vs. spatial). In two studies, the crossing effect was consistently reduced under processing load. When the load level was adaptively adjusted to individual performance (Study 2), the crossing effect additionally varied as a function of the difficulty of the secondary task. These modulatory effects of processing load on the crossing effect were independent of the type of working memory. The sensitivity of the crossing effect to processing load suggests that coordinate integration for touch localization is not fully automatic. To reconcile the present results with previous findings, we suggest that the genuine remapping process—that is, the transformation of anatomical into external coordinates—proceeds automatically, whereas their integration in service of a combined location estimate is subject to top-down control.


Spatial localization Automaticity Touch 



This work was supported by the German Research Foundation (DFG) through the German–Chinese Research Training Group CINACS, DFG GRK 1247/1 and 1247/2. T.H. is supported by the Emmy Noether Program of the DFG. We thank M. Sprengl and T. Thöring for help with data acquisition.


  1. Alsius, A., Navarra, J., Campbell, R., & Soto-Faraco, S. (2005). Audiovisual integration of speech falters under high attention demands. Current Biology, 2(9), 839–843. doi: 10.1016/j.cub.2005.03.046 CrossRefGoogle Scholar
  2. Alsius, A., Navarra, J., & Soto-Faraco, S. (2007). Attention to touch weakens audiovisual speech integration. Experimental Brain Research, 2(3), 399–404. doi: 10.1007/s00221-007-1110-1 CrossRefGoogle Scholar
  3. Azañón, E., & Soto-Faraco, S. (2007). Alleviating the ’crossed-hands’ deficit by seeing uncrossed rubber hands. Experimental Brain Research, 2(4), 537–548. doi: 10.1007/s00221-007-1011-3 CrossRefGoogle Scholar
  4. Azañón, E., Camacho, K., & Soto-Faraco, S. (2010a). Tactile remapping beyond space. European Journal of Neuroscience, 2(10), 1858–1867. doi: 10.1111/j.1460-9568.2010.07233.x CrossRefGoogle Scholar
  5. Azañón, E., Longo, M. R., Soto-Faraco, S., & Haggard, P. (2010b). The posterior parietal cortex remaps touch into external space. Current Biology, 2(14), 1304–1309. doi: 10.1016/j.cub.2010.05.063 CrossRefGoogle Scholar
  6. Baart, M., & Vroomen, J. (2010). Phonetic recalibration does not depend on working memory. Experimental Brain Research, 2(3), 575–582. doi: 10.1007/s00221-010-2264-9 CrossRefGoogle Scholar
  7. Badde, S., Heed, T., & Röder, B. (2013). Body posture affects integration of reference frames rather than coordinate transformation. (in revision).Google Scholar
  8. Badde, S., Röder, B., & Heed, T. (2014). Multiple spatial representations determine touch localization on the fingers. Journal of Experimental Psychology: Human Perception and Performance.Google Scholar
  9. Berryhill, M. E. (2012). Insights from neuropsychology: pinpointing the role of the posterior parietal cortex in episodic and working memory. Frontiers in Integrative Neuroscience, 2, 31. doi: 10.3389/fnint.2012.00031 Google Scholar
  10. Bolognini, N., & Maravita, A. (2007). Proprioceptive alignment of visual and somatosensory maps in the posterior parietal cortex. Current Biology, 2(21), 1890–1895. doi: 10.1016/j.cub.2007.09.057 CrossRefGoogle Scholar
  11. Brand-D’Abrescia, M., & Lavie, N. (2008). Task coordination between and within sensory modalities: effects on distraction. Perception & Psychophysics, 2(3), 508–515. doi: 10.3758/PP.70.3.508 CrossRefGoogle Scholar
  12. Buchholz, V. N., Jensen, O., & Medendorp, W. P. (2011). Multiple reference frames in cortical oscillatory activity during tactile remapping for saccades. Journal of Neuroscience, 2(46), 16864–16871. doi: 10.1523/JNEUROSCI.3404-11.2011 CrossRefGoogle Scholar
  13. Buchholz, V. N., Jensen, O., & Medendorp, W. P. (2013). Parietal oscillations code nonvisual reach targets relative to gaze and body. Journal of Neuroscience, 2(8), 3492–3499. doi: 10.1523/JNEUROSCI.3208-12.2013 CrossRefGoogle Scholar
  14. Disbrow, E., Roberts, T., & Krubitzer, L. (2000). Somatotopic organization of cortical fields in the lateral sulcus of homo sapiens: evidence for SII and PV. Journal of Comparative Neurology, 2(1), 1–21.CrossRefGoogle Scholar
  15. Diwadkar, V. A., Carpenter, P. A., & Just, M. A. (2000). Collaborative activity between parietal and dorso-lateral prefrontal cortex in dynamic spatial working memory revealed by fMRI. NeuroImage, 2(1), 85–99. doi: 10.1006/nimg.2000.0586 CrossRefGoogle Scholar
  16. Driver, J., & Spence, C. (1998). Cross-modal links in spatial attention. Philosophical Transactions of the Royal Society, B: Biological Sciences, 353(1373), 1319–1331. doi: 10.1098/rstb.1998.0286 PubMedCentralCrossRefGoogle Scholar
  17. Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G*power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 2(2), 175–191.CrossRefGoogle Scholar
  18. Faul, F., Erdfelder, E., Buchner, A., & Lang, A. G. (2009). Statistical power analyses using g*power 3.1: tests for correlation and regression analyses. Behavior Research Methods, 2(4), 1149–1160. doi: 10.3758/BRM.41.4.1149 CrossRefGoogle Scholar
  19. Fischer, M. H., Castel, A. D., Dodd, M. D., & Pratt, J. (2003). Perceiving numbers causes spatial shifts of attention. Nature Neuroscience, 2(6), 555–556. doi: 10.1038/nn1066 CrossRefGoogle Scholar
  20. Heed, T., & Röder, B. (2010). Common anatomical and external coding for hands and feet in tactile attention: evidence from event-related potentials. Journal of Cognitive Neuroscience, 2(1), 184–202. doi: 10.1162/jocn.2008.21168 CrossRefGoogle Scholar
  21. Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 2(2), 65–70.Google Scholar
  22. Kane, M. J., Conway, A. R. A., Miura, T. K., & Colflesh, G. J. H. (2007). Working memory, attention control, and the n-back task: a question of construct validity. Journal of Experimental Psychology: Learning, Memory, and Cognition, 2(3), 615–622. doi: 10.1037/0278-7393.33.3.615 Google Scholar
  23. Kesten, H. (1958). Accelerated stochastic approximation. Annals of Mathematical Statistics, 2(1), 41–59.CrossRefGoogle Scholar
  24. Kitazawa, S. (2002). Where conscious sensation takes place. Consciousness and Cognition, 2(3), 475–477. doi: 10.1016/S1053-8100(02)00031-4 CrossRefGoogle Scholar
  25. Koch, G., Oliveri, M., Torriero, S., Carlesimo, G. A., Turriziani, P., & Caltagirone, C. (2005). rTMS evidence of different delay and decision processes in a fronto-parietal neuronal network activated during spatial working memory. NeuroImage, 2(1), 34–39. doi: 10.1016/j.neuroimage.2004.09.042 CrossRefGoogle Scholar
  26. Lavie, N., Hirst, A., de Fockert, J. W., & Viding, E. (2004). Load theory of selective attention and cognitive control. Journal of Experimental Psychology: General, 2(3), 339–354. doi: 10.1037/0096-3445.133.3.339 CrossRefGoogle Scholar
  27. Logan, G. D. (1979). On the use of a concurrent memory load to measure attention and automaticity. Journal of Experimental Psychology: Human Perception and Performance, 2(2), 189–207. doi: 10.1037/0096-1523.5.2.189 Google Scholar
  28. Ma, L., Steinberg, J. L., Hasan, K. M., Narayana, P. A., Kramer, L. A., & Moeller, F. G. (2012). Working memory load modulation of parieto-frontal connections: evidence from dynamic causal modeling. Human Brain Mapping, 2(8), 1850–1867. doi: 10.1002/hbm.21329 CrossRefGoogle Scholar
  29. Magen, H., Emmanouil, T. A., McMains, S. A., Kastner, S., & Treisman, A. (2009). Attentional demands predict short-term memory load response in posterior parietal cortex. Neuropsychologia, 47(8–9), 1790–1798. doi: 10.1016/j.neuropsychologia.2009.02.015 PubMedCentralPubMedCrossRefGoogle Scholar
  30. Maxwell, S., & Delaney, H. 2004. Designing experiments and analyzing data: A model comparison perspective (Vol. 1). Lawrence Erlbaum.Google Scholar
  31. Moors, A., & De Houwer, J. (2006). Automaticity: a theoretical and conceptual analysis. Psychological Bulletin, 2(2), 297–326. doi: 10.1037/0033-2909.132.2.297 CrossRefGoogle Scholar
  32. Owen, A. M., McMillan, K. M., Laird, A. R., & Bullmore, E. (2005). N-back working memory paradigm: a meta-analysis of normative functional neuroimaging studies. Human Brain Mapping, 2(1), 46–59. doi: 10.1002/hbm.20131 CrossRefGoogle Scholar
  33. Pagel, B., Heed, T. & Röder, B. ( 2009) Change of reference frame for tactile localization during child development. Development of Science 12, 929--937.Google Scholar
  34. Penfield, W., & Boldrey, E. (1937). Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain, 2(4), 389–443. doi: 10.1093/brain/60.4.389 CrossRefGoogle Scholar
  35. Posner, M., & Snyder, C. (1975). Attention and cognitive control. In R. Solso (Ed.), Information processing and cognition: The Loyola symposium (pp. 55–85). Hillsdale: Lawrence Erlbaum Associates Inc.Google Scholar
  36. Pouget, A., Ducom, J. C., Torri, J., & Bavelier, D. (2002). Multisensory spatial representations in eye-centered coordinates for reaching. Cognition, 2(1), B1–B11. doi: 10.1016/S0010-0277(01)00163-9 CrossRefGoogle Scholar
  37. Regenbogen, C., De Vos, M., Debener, S., Turetsky, B., Mößnang, C., Finkelmeyer, A., Habel, U., Neuner, I., & Kellermann, T. (2012). Auditory processing under cross-modal visual load investigated with simultaneous EEG-fMRI. PloS one, 2(12), e52267. doi: 10.1371/journal.pone.0052267
  38. Renzi, C., Bruns, P., Heise, K.-F., Zimerman, M., Feldheim, J.-F., Hummel, F. C., & Röder, B. (2013). Spatial remapping in the audio-tactile ventriloquism effect: A TMS investigation on the role of the ventral intraparietal area. Journal of Cognitive Neuroscience. doi: 10.1162/jocna00362
  39. Robbins, H., & Monro, S. (1951). A stochastic approximation method. Annals of Mathematical Statistics, 2(3), 400–407.CrossRefGoogle Scholar
  40. Röder, B., Spence, C., & Rösler, F. (2002). Assessing the effect of posture change on tactile inhibition-of-return. Experimental Brain Research, 2(4), 453–462. doi: 10.1007/s00221-002-1019-7 CrossRefGoogle Scholar
  41. Röder, B., Rösler, F., & Spence, C. (2004). Early vision impairs tactile perception in the blind. Current Biology, 2(2), 121–124. doi: 10.1016/S0960-9822(03)00984-9 CrossRefGoogle Scholar
  42. Röder, B., Föcker, J., Hötting, K., & Spence, C. (2008). Spatial coordinate systems for tactile spatial attention depend on developmental vision: evidence from event-related potentials in sighted and congenitally blind adult humans. European Journal of Neuroscience, 2(3), 475–483. doi: 10.1111/j.1460-9568.2008.06352.x Google Scholar
  43. Röder, B., Pagel, B., & Heed, T. (2013). The implicit use of spatial information develops later for crossmodal than for intramodal temporal processing. Cognition, 2(2), 301–306. doi: 10.1016/j.cognition.2012.09.009 CrossRefGoogle Scholar
  44. Schneider, W., & Shiffrin, R. M. (1977). Controlled and automatic human information processing: I. detection, search, and attention. Psychological Review, 2(1), 1–66. doi: 10.1037/0033-295X.84.1.1 CrossRefGoogle Scholar
  45. Shiffrin, R. M., & Schneider, W. (1977). Controlled and automatic human information processing: II. perceptual learning, automatic attending and a general theory. Psychological Review, 2(2), 127–190. doi: 10.1037/0033-295X.84.2.127 CrossRefGoogle Scholar
  46. Shore, D. I., Spry, E., & Spence, C. (2002). Confusing the mind by crossing the hands. Cognitive Brain Research, 2(1), 153–163. doi: 10.1016/S0926-6410(02)00070-8 CrossRefGoogle Scholar
  47. Sober, S. J., & Sabes, P. N. (2005). Flexible strategies for sensory integration during motor planning. Nature Neuroscience, 2(4), 490–497. doi: 10.1038/nn1427 Google Scholar
  48. Soto-Faraco, S., Navarra, J., & Alsius, A. (2004). Assessing automaticity in audiovisual speech integration: evidence from the speeded classification task. Cognition, 2(3), B13–B23. doi: 10.1016/j.cognition.2003.10.005 CrossRefGoogle Scholar
  49. Sternberg, S. (1966). High-speed scanning in human memory. Science, 2(3736), 652–654. doi: 10.1126/science.153.3736.652 CrossRefGoogle Scholar
  50. Talsma, D., Senkowski, D., Soto-Faraco, S., & Woldorff, M. G. (2010). The multifaceted interplay between attention and multisensory integration. Trends in Cognitive Science, 2(9), 400–410. doi: 10.1016/j.tics.2010.06.008 CrossRefGoogle Scholar
  51. Todd, J. J., & Marois, R. (2005). Posterior parietal cortex activity predicts individual differences in visual short-term memory capacity. Cognitive, Affective, & Behavioral Neuroscience, 2(2), 144–155. doi: 10.3758/CABN.5.2.144
  52. Tseng, P., Hsu, T.-Y., Chang, C.-F., Tzeng, O. J. L., Hung, D. L., Muggleton, N. G., Walsh, V., Liang, W.-K., kuen Cheng, S., & Juan, C.-H. (2012). Unleashing potential: transcranial direct current stimulation over the right posterior parietal cortex improves change detection in low-performing individuals. Journal of Neuroscience, 2(31), 10554–10561. doi: 10.1523/JNEUROSCI.0362-12.2012 Google Scholar
  53. Wada, M., Yamamoto, S., & Kitazawa, S. (2004). Effects of handedness on tactile temporal order judgment. Neuropsychologia, 2(14), 1887–1895. doi: 10.1016/j.neuropsychologia.2004.05.009 CrossRefGoogle Scholar
  54. World Medical Association. (2008). Declaration of Helsinki. Ethical principles for medical research involving human subjects. Bull World Health Organ, 2(4), 373–374.
  55. Yamamoto, S., & Kitazawa, S. (2001). Reversal of subjective temporal order due to arm crossing. Nature Neuroscience, 2(7), 759–765. doi: 10.1038/89559 CrossRefGoogle Scholar
  56. Yang, T. T. (1993). Noninvasive somatosensory homunculus mapping in humans by using a large-array biomagnetometer. Proceedings of the National Academy of Sciences, 2(7), 3098–3102. doi: 10.1073/pnas.90.7.3098 CrossRefGoogle Scholar
  57. Zimmer, U., & Macaluso, E. (2007). Processing of multisensory spatial congruency can be dissociated from working memory and visuo-spatial attention. European Journal of Neuroscience, 2(6), 1681–1691. doi: 10.1111/j.1460-9568.2007.05784.x CrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2014

Authors and Affiliations

  1. 1.Biological Psychology and NeuropsychologyUniversity of HamburgHamburgGermany

Personalised recommendations