Attention, Perception, & Psychophysics

, Volume 76, Issue 2, pp 473–488 | Cite as

Perceptual adaptation to structure-from-motion depends on the size of adaptor and probe objects, but not on the similarity of their shapes

  • Alexander PastukhovEmail author
  • Anna Lissner
  • Jochen Braun


Perceptual adaptation destabilizes the phenomenal appearance of multistable visual displays. Prolonged dominance of a perceptual state fatigues the associated neural population, lowering the likelihood of renewed perception of the same appearance (Nawrot & Blake in Perception & Psychophysics, 49, 230–44, 1991). Here, we used a selective adaptation paradigm to investigate perceptual adaptation for the illusory rotation of ambiguous structure-from-motion (SFM) displays. Specifically, we generated SFM objects with different three-dimensional shapes and presented them in random order, separating successive objects by brief blank periods, which included a mask. To assess the specificity of perceptual adaptation to the shape of SFM objects, we established the probability that a perceived direction of rotation persisted between successive objects of similar or dissimilar shape. We found that the strength of negative aftereffects depended on the volume, but not the shape, of adaptor and probe objects. More voluminous objects were both more effective as adaptor objects and more sensitive as probe objects. Surprisingly, we found these volume effects to be completely independent, since any relationship between two shapes (such as overlap between volumes, similarity of shape, or similarity of velocity profiles) failed to modulate the negative aftereffect. This pattern of results was the opposite of that observed for sensory memory of SFM objects, which reflects similarity between objects, but not volume of individual objects (Pastukhov et al. in Attention, Perception & Psychophysics, 75, 1215–1229, 2013). The disparate specificities of perceptual adaptation and sensory memory for identical SFM objects suggest that the two aftereffects engage distinct neural representations, consistent with recent brain imaging results (Schwiedrzik et al. in Cerebral Cortex, 2012).


3D perception Depth and shape from X Binocular vision Rivalry/Bistable perception Perceptual implicit memory 

Supplementary material (1.9 mb)
Movie 1 Structure-from-motion: (hollow) sphere. (MOV 1907 kb) (1.8 mb)
Movie 2 Structure-from-motion: quad band. (MOV 1864 kb) (1.5 mb)
Movie 3 Structure-from-motion: dual band. (MOV 1560 kb) (1.2 mb)
Movie 4 Structure-from-motion: single band. (MOV 1272 kb) (7.5 mb)
Movie 5 Presentation sequence for Experiment 2. (MOV 7646 kb) (2.1 mb)
Movie 6 Structure-from-motion: hollow cylinder. (MOV 2134 kb) (2.2 mb)
Movie 7 Structure-from-motion: filled sphere. (MOV 2238 kb) (2.2 mb)
Movie 8 Structure-from-motion: filled cylinder. (MOV 2226 kb) (1.9 mb)
Movie 9 Structure-from-motion: hourglass. (MOV 1930 kb) (1.8 mb)
Movie 10 Structure-from-motion: spinning top. (MOV 1890 kb) (1.6 mb)
Movie 11 Structure-from-motion: tilted cross. (MOV 1629 kb) (1.2 mb)
Movie 12 Structure-from-motion: bent band. (MOV 1245 kb)


  1. Adams, P. A. (1954). The effect of past experience on the perspective reversal of a tridimensional figure. The American Journal of Psychology, 67(4), 708–710.PubMedCrossRefGoogle Scholar
  2. Blakemore, C., & Campbell, F. W. (1969). On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images. The Journal of Physiology, 203(1), 237–260.PubMedCentralPubMedCrossRefGoogle Scholar
  3. Bradley, D. C., Chang, G. C., & Andersen, R. A. (1998). Encoding of three-dimensional structure-from-motion by primate area MT neurons. Nature, 392(6677), 714–717. doi: 10.1038/33688 PubMedCrossRefGoogle Scholar
  4. Brainard, D. H. (1997). The Psychophysics Toolbox. Spatial Vision, 10(4), 433–436. doi: 10.1163/156856897X00357 PubMedCrossRefGoogle Scholar
  5. Brascamp, J. W., Kanai, R., Walsh, V., & van Ee, R. (2010). Human middle temporal cortex, perceptual bias, and perceptual memory for ambiguous three-dimensional motion. Journal of Neuroscience, 30(2), 760–766. doi: 10.1523/JNEUROSCI.4171-09.2010 PubMedCrossRefGoogle Scholar
  6. Brascamp, J. W., Knapen, T. H. J., Kanai, R., Noest, A. J., van Ee, R., & van den Berg, A. V. (2008). Multi-timescale perceptual history resolves visual ambiguity. PloS One, 3(1), e1497. doi: 10.1371/journal.pone.0001497 PubMedCentralPubMedCrossRefGoogle Scholar
  7. Brascamp, J. W., Knapen, T. H. J., Kanai, R., van Ee, R., & van den Berg, A. V. (2007). Flash suppression and flash facilitation in binocular rivalry. Journal of Vision, 7(12), 12.1–12. doi: 10.1167/7.12.12 CrossRefGoogle Scholar
  8. Brascamp, J. W., Pearson, J., Blake, R., & van den Berg, A. V. (2009). Intermittent ambiguous stimuli: Implicit memory causes periodic perceptual alternations. Journal of Vision, 9(3), 3.1–23. doi: 10.1167/9.3.3 CrossRefGoogle Scholar
  9. Caplovitz, G. P., Shapiro, A. G., & Stroud, S. (2011). The maintenance and disambiguation of object representations depend upon feature contrast within and between objects. Journal of Vision, 11(14), 1–14. doi: 10.1167/11.14.1 PubMedCrossRefGoogle Scholar
  10. Celebrini, S., & Newsome, W. T. (1994). Neuronal and psychophysical sensitivity to motion signals in extrastriate area MST of the macaque monkey. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 14(7), 4109–4124.Google Scholar
  11. Chen, X., & He, S. (2004). Local factors determine the stabilization of monocular ambiguous and binocular rivalry stimuli. Current Biology, 14(11), 1013–1017. doi: 10.1016/j.cub.2004.05.042 PubMedCrossRefGoogle Scholar
  12. Clifford, C. W. G., Webster, M. A., Stanley, G. B., Stocker, A. A., Kohn, A., Sharpee, T. O., & Schwartz, O. (2007). Visual adaptation: Neural, psychological and computational aspects. Vision Research, 47(25), 3125–3131. doi: 10.1016/j.visres.2007.08.023 PubMedCrossRefGoogle Scholar
  13. Daelli, V., van Rijsbergen, N. J., & Treves, A. (2010). How recent experience affects the perception of ambiguous objects. Brain Research, 1322, 81–91. doi: 10.1016/j.brainres.2010.01.060 PubMedCrossRefGoogle Scholar
  14. De Jong, M. C., Knapen, T. H. J., & van Ee, R. (2012). Opposite influence of perceptual memory on initial and prolonged perception of sensory ambiguity. PloS One, 7(1), e30595. doi: 10.1371/journal.pone.0030595 PubMedCentralPubMedCrossRefGoogle Scholar
  15. De Jong, M. C., Kourtzi, Z., & van Ee, R. (2012). Perceptual experience modulates cortical circuits involved in visual awareness. The European Journal of Neuroscience, 36(12), 3718–3731. doi: 10.1111/ejn.12005 PubMedCrossRefGoogle Scholar
  16. Desimone, R. (1996). Neural mechanisms for visual memory and their role in attention. Proceedings of the National Academy of Sciences of the United States of America, 93(24), 13494–13499.PubMedCentralPubMedCrossRefGoogle Scholar
  17. Desimone, R., & Ungerleider, L. G. (1986). Multiple visual areas in the caudal superior temporal sulcus of the macaque. The Journal of Comparative Neurology, 248(2), 164–189. doi: 10.1002/cne.902480203 PubMedCrossRefGoogle Scholar
  18. Duffy, C. J., & Wurtz, R. H. (1991). Sensitivity of MST neurons to optic flow stimuli. II. Mechanisms of response selectivity revealed by small-field stimuli. Journal of Neurophysiology, 65(6), 1346–1359.PubMedGoogle Scholar
  19. Fang, F., Murray, S. O., & He, S. (2007). Duration-dependent FMRI adaptation and distributed viewer-centered face representation in human visual cortex. Cerebral Cortex (New York, N.Y.: 1991), 17(6), 1402–1411. doi: 10.1093/cercor/bhl053 CrossRefGoogle Scholar
  20. Feldman, J., & Tremoulet, P. D. (2006). Individuation of visual objects over time. Cognition, 99(2), 131–165. doi: 10.1016/j.cognition.2004.12.008 PubMedCrossRefGoogle Scholar
  21. Ganel, T., Gonzalez, C. L. R., Valyear, K. F., Culham, J. C., Goodale, M. A., & Köhler, S. (2006). The relationship between fMRI adaptation and repetition priming. NeuroImage, 32(3), 1432–1440. doi: 10.1016/j.neuroimage.2006.05.039 PubMedCrossRefGoogle Scholar
  22. Gepshtein, S., & Kubovy, M. (2005). Stability and change in perception: Spatial organization in temporal context. Experimental Brain Research., 160(4), 487–495. doi: 10.1007/s00221-004-2038-3 PubMedCrossRefGoogle Scholar
  23. Gigante, G., Mattia, M., Braun, J., & Del Giudice, P. (2009). Bistable perception modeled as competing stochastic integrations at two levels. PLoS Computational Biology, 5(7), e1000430. doi: 10.1371/journal.pcbi.1000430 PubMedCentralPubMedCrossRefGoogle Scholar
  24. Grill-Spector, K., Henson, R., & Martin, A. (2006). Repetition and the brain: Neural models of stimulus-specific effects. Trends in Cognitive Sciences, 10(1), 14–23. doi: 10.1016/j.tics.2005.11.006 PubMedCrossRefGoogle Scholar
  25. Grill-Spector, K., Kushnir, T., Edelman, S., Avidan, G., Itzchak, Y., & Malach, R. (1999). Differential processing of objects under various viewing conditions in the human lateral occipital complex. Neuron, 24(1), 187–203. doi: 10.1016/S0896-6273(00)80832-6 PubMedCrossRefGoogle Scholar
  26. Huk, A. C., & Heeger, D. J. (2002). Pattern-motion responses in human visual cortex. Nature Neuroscience, 5(1), 72–75. doi: 10.1038/nn774 PubMedCrossRefGoogle Scholar
  27. Kawachi, Y., Kawabe, T., & Gyoba, J. (2011). Stream/bounce event perception reveals a temporal limit of motion correspondence based on surface feature over space and time. i-Perception, 2(5), 428–439. doi: 10.1068/i0399 PubMedCentralPubMedCrossRefGoogle Scholar
  28. Klink, P. C., van Ee, R., Nijs, M. M., Brouwer, G. J., Noest, A. J., & van Wezel, R. J. A. (2008). Early interactions between neuronal adaptation and voluntary control determine perceptual choices in bistable vision. Journal of Vision, 8(5), 16.1–18. doi: 10.1167/8.5.16 CrossRefGoogle Scholar
  29. Kornmeier, J., & Bach, M. (2004). Early neural activity in Necker-cube reversal: Evidence for low-level processing of a gestalt phenomenon. Psychophysiology, 41(1), 1–8. doi: 10.1046/j.1469-8986.2003.00126.x PubMedCrossRefGoogle Scholar
  30. Kornmeier, J., Ehm, W., Bigalke, H., & Bach, M. (2007). Discontinuous presentation of ambiguous figures: How interstimulus-interval durations affect reversal dynamics and ERPs. Psychophysiology, 44(4), 552–560. doi: 10.1111/j.1469-8986.2007.00525.x PubMedCrossRefGoogle Scholar
  31. Kramer, P., & Rudd, M. (1999). Visible persistence and form correspondence in Ternus apparent motion. Perception & Psychophysics, 61(5), 952–962. doi: 10.3758/BF03206909 CrossRefGoogle Scholar
  32. Kristjánsson, A., & Campana, G. (2010). Where perception meets memory: A review of repetition priming in visual search tasks. Attention, Perception & Psychophysics, 72(1), 5–18. doi: 10.3758/APP.72.1.5 CrossRefGoogle Scholar
  33. Leopold, D. A., O’Toole, A. J., Vetter, T., & Blanz, V. (2001). Prototype-referenced shape encoding revealed by high-level aftereffects. Nature Neuroscience, 4(1), 89–94. doi: 10.1038/82947 PubMedCrossRefGoogle Scholar
  34. Leopold, D. A., Wilke, M., Maier, A., & Logothetis, N. K. (2002). Stable perception of visually ambiguous patterns. Nature Neuroscience, 5(6), 605–609. doi: 10.1038/nn851 PubMedCrossRefGoogle Scholar
  35. Livingstone, M., & Hubel, D. (1988). Segregation of form, color, movement, and depth: Anatomy, physiology, and perception. Science (New York, N.Y.), 240(4853), 740–749. doi: 10.1126/science.3283936 CrossRefGoogle Scholar
  36. Maier, A., Wilke, M., Logothetis, N. K., & Leopold, D. A. (2003). Perception of temporally interleaved ambiguous patterns. Current Biology, 13(13), 1076–1085. doi: 10.1016/S0960-9822(03)00414-7 PubMedCrossRefGoogle Scholar
  37. Malach, R. (2012). Targeting the functional properties of cortical neurons using fMR-adaptation. NeuroImage, 62(2), 1163–1169. doi: 10.1016/j.neuroimage.2012.01.002 PubMedCrossRefGoogle Scholar
  38. Martinez-Trujillo, J. C., Tsotsos, J. K., Simine, E., Pomplun, M., Wildes, R., Treue, S., … Hopf, J.-M. (2005). Selectivity for speed gradients in human area MT/V5. Neuroreport, 16(5), 435–438.Google Scholar
  39. Morrone, M. C., Burr, D. C., & Vaina, L. M. (1995). Two stages of visual processing for radial and circular motion. Nature, 376(6540), 507–509. doi: 10.1038/376507a0 PubMedCrossRefGoogle Scholar
  40. Movshon, J. A., & Newsome, W. T. (1996). Visual response properties of striate cortical neurons projecting to area MT in macaque monkeys. J Neurosci, 16(23), 7733–7741.PubMedGoogle Scholar
  41. Nawrot, M., & Blake, R. (1989). Neural integration of information specifying structure from stereopsis and motion. Science (New York, N.Y.), 244(4905), 716–718. doi: 10.1126/science.2717948 CrossRefGoogle Scholar
  42. Nawrot, M., & Blake, R. (1991). The interplay between stereopsis and structure from motion. Perception & Psychophysics, 49(3), 230–244. doi: 10.3758/BF03214308 CrossRefGoogle Scholar
  43. Noest, A. J., van Ee, R., Nijs, M. M., & van Wezel, R. J. A. (2007). Percept-choice sequences driven by interrupted ambiguous stimuli: A low-level neural model. Journal of Vision, 7(8), 10. doi: 10.1167/7.8.10 PubMedCrossRefGoogle Scholar
  44. Noest, A. J., & van Wezel, R. J. A. (2012). Dynamics of temporally interleaved percept-choice sequences: Interaction via adaptation in shared neural populations. Journal of Computational Neuroscience, 32(1), 177–195. doi: 10.1007/s10827-011-0347-7 Google Scholar
  45. Orbach, J., Ehrlich, D., & Heath, H. A. (1963). Reversibility of the Necker cube. I. An examination of the concept of “satiation of orientation”. Perceptual and Motor Skills, 17, 439–458. doi: 10.2466/pms.1963.17.2.439 PubMedCrossRefGoogle Scholar
  46. Orban, G. A. (2011). The extraction of 3D shape in the visual system of human and nonhuman primates. Annual Review of Neuroscience, 34, 361–388. doi: 10.1146/annurev-neuro-061010-113819 PubMedCrossRefGoogle Scholar
  47. Orban, G. A., Fize, D., Peuskens, H., Denys, K., Nelissen, K., Sunaert, S., … Vanduffel, W. (2003). Similarities and differences in motion processing between the human and macaque brain: Evidence from fMRI. Neuropsychologia, 41(13), 1757–1768. doi: 10.1016/S0028-3932(03)00177-5 Google Scholar
  48. Pastukhov, A., & Braun, J. (2008). A short-term memory of multi-stable perception. Journal of Vision, 8(13), 7.1–14. doi: 10.1167/8.13.7 CrossRefGoogle Scholar
  49. Pastukhov, A., & Braun, J. (2011). Cumulative history quantifies the role of neural adaptation in multistable perception. Journal of Vision, 11(10), 12. doi: 10.1167/11.10.12 PubMedCrossRefGoogle Scholar
  50. Pastukhov, A., & Braun, J. (2013a). Disparate time-courses of adaptation and facilitation in multi-stable perception. Learning & Perception, 5(s2), 101–118. doi: 10.1556/LP.5.2013.Suppl2.7 CrossRefGoogle Scholar
  51. Pastukhov, A., & Braun, J. (2013b). Structure-from-motion: Dissociating perception, neural persistence, and sensory memory of illusory depth and illusory rotation. Attention, Perception & Psychophysics, 75(2), 322–340. doi: 10.3758/s13414-012-0390-0 CrossRefGoogle Scholar
  52. Pastukhov, A., Füllekrug, J., & Braun, J. (2013). Sensory memory of structure-from-motion is shape-specific. Attention, Perception & Psychophysics, 75(6), 1215–1229. doi: 10.3758/s13414-013-0471-8 CrossRefGoogle Scholar
  53. Pearson, J., & Brascamp, J. W. (2008). Sensory memory for ambiguous vision. Trends in Cognitive Sciences, 12(9), 334–341. doi: 10.1016/j.tics.2008.05.006 PubMedCrossRefGoogle Scholar
  54. Petersik, T. J. (2002). Buildup and decay of a three-dimensional rotational aftereffect obtained with a three-dimensional figure. Perception, 31(7), 825–836. doi: 10.1068/p3358 PubMedCrossRefGoogle Scholar
  55. Peuskens, H., Claeys, K. G., Todd, J. T., Norman, J. F., Van Hecke, P., & Orban, G. A. (2004). Attention to 3-D shape, 3-D motion, and texture in 3-D structure from motion displays. Journal of Cognitive Neuroscience, 16(4), 665–682. doi: 10.1162/089892904323057371 PubMedCrossRefGoogle Scholar
  56. Preston, T. J., Kourtzi, Z., & Welchman, A. E. (2009). Adaptive estimation of three-dimensional structure in the human brain. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 29(6), 1688–1698. doi: 10.1523/JNEUROSCI.5021-08.2009 CrossRefGoogle Scholar
  57. Raiguel, S., Van Hulle, M. M., Xiao, D. K., Marcar, V. L., Lagae, L., & Orban, G. A. (1997). Size and shape of receptive fields in the medial superior temporal area (MST) of the macaque. Neuroreport, 8(12), 2803–2808.PubMedCrossRefGoogle Scholar
  58. Ross, T. D. (2003). Accurate confidence intervals for binomial proportion and Poisson rate estimation. Computers in Biology and Medicine, 33(6), 509–531. doi: 10.1016/S0010-4825(03)00019-2 PubMedCrossRefGoogle Scholar
  59. Rust, N. C., Mante, V., Simoncelli, E. P., & Movshon, J. A. (2006). How MT cells analyze the motion of visual patterns. Nature Neuroscience, 9(11), 1421–1431. doi: 10.1038/nn1786 PubMedCrossRefGoogle Scholar
  60. Schacter, D. L., Wig, G. S., & Stevens, W. D. (2007). Reductions in cortical activity during priming. Current Opinion in Neurobiology, 17(2), 171–176. doi: 10.1016/j.conb.2007.02.001 PubMedCrossRefGoogle Scholar
  61. Schwiedrzik, C. M., Ruff, C. C., Lazar, A., Leitner, F. C., Singer, W., & Melloni, L. (2012). Untangling perceptual memory: Hysteresis and adaptation map into separate cortical networks. Cerebral Cortex. doi: 10.1093/cercor/bhs396 PubMedCentralPubMedGoogle Scholar
  62. Segaert, K., Weber, K., de Lange, F. P., Petersson, K. M., & Hagoort, P. (2013). The suppression of repetition enhancement: A review of fMRI studies. Neuropsychologia, 51(1), 59–66. doi: 10.1016/j.neuropsychologia.2012.11.006 PubMedCrossRefGoogle Scholar
  63. Shechter, S., Hochstein, S., & Hillman, P. (1988). Shape similarity and distance disparity as apparent motion correspondence cues. Vision Research, 28(9), 1013–1021. doi: 10.1016/0042-6989(88)90078-8 PubMedCrossRefGoogle Scholar
  64. Sincich, L. C., & Horton, J. C. (2005). The circuitry of V1 and V2: Integration of color, form, and motion. Annual Review of Neuroscience, 28, 303–326. doi: 10.1146/annurev.neuro.28.061604.135731 PubMedCrossRefGoogle Scholar
  65. Smith, A. T., & Wall, M. B. (2008). Sensitivity of human visual cortical areas to the stereoscopic depth of a moving stimulus. Journal of Vision, 8(10), 1.1–12. doi: 10.1167/8.10.1 CrossRefGoogle Scholar
  66. Smith, A. T., Wall, M. B., Williams, A. L., & Singh, K. D. (2006). Sensitivity to optic flow in human cortical areas MT and MST. The European Journal of Neuroscience, 23(2), 561–569. doi: 10.1111/j.1460-9568.2005.04526.x PubMedCrossRefGoogle Scholar
  67. Sperling, G., & Dosher, B. A. (1994). Depth from motion. In T. V. Papathomas, A. G. Charles Chubb, & E. Kowler (Eds.), Early vision and beyond (pp. 133–142). Cambridge, MA: MIT Press.Google Scholar
  68. Sterzer, P., & Rees, G. (2008). A neural basis for percept stabilization in binocular rivalry. Journal of Cognitive Neuroscience, 20(3), 389–399. doi: 10.1162/jocn.2008.20039 PubMedCrossRefGoogle Scholar
  69. Tanaka, K., Fukada, Y., & Saito, H. A. (1989). Underlying mechanisms of the response specificity of expansion/contraction and rotation cells in the dorsal part of the medial superior temporal area of the macaque monkey. Journal of Neurophysiology, 62(3), 642–656.PubMedGoogle Scholar
  70. Tanaka, Y., & Sagi, D. (1998). A perceptual memory for low-contrast visual signals. Proceedings of the National Academy of Sciences of the United States of America, 95(21), 12729–12733. doi: 10.1073/pnas.95.21.12729 PubMedCentralPubMedCrossRefGoogle Scholar
  71. Van Essen, D. C., Maunsell, J. H., & Bixby, J. L. (1981). The middle temporal visual area in the macaque: Myeloarchitecture, connections, functional properties and topographic organization. The Journal of Comparative Neurology, 199(3), 293–326. doi: 10.1002/cne.901990302 PubMedCrossRefGoogle Scholar
  72. Wallach, H., & O’Connell, D. N. (1953). The kinetic depth effect. Journal of Experimental Psychology, 45(4), 205–217. doi: 10.1037/h0056880 PubMedCrossRefGoogle Scholar
  73. Walther, C., Schweinberger, S. R., Kaiser, D., & Kovács, G. (2012). Neural correlates of priming and adaptation in familiar face perception. Cortex; A Journal Devoted to the Study of the Nervous System and Behavior, 1–15. doi: 10.1016/j.cortex.2012.08.012
  74. Webster, M. A. (2011). Adaptation and visual coding. Journal of Vision, 11(5), 1–23. doi: 10.1167/11.5.3 CrossRefGoogle Scholar
  75. Wolfe, J. M. (1984). Reversing ocular dominance and suppression in a single flash. Vision Research, 24(5), 471–478. doi: 10.1016/0042-6989(84)90044-0 PubMedCrossRefGoogle Scholar
  76. Yu, K. (2000). Can semantic knowledge influence motion correspondence? Perception, 29(6), 693–707. doi: 10.1068/p3063 PubMedCrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2013

Authors and Affiliations

  • Alexander Pastukhov
    • 1
    • 2
    Email author
  • Anna Lissner
    • 1
    • 2
  • Jochen Braun
    • 1
    • 2
  1. 1.Center for Behavioral Brain SciencesMagdeburgGermany
  2. 2.Cognitive BiologyOtto-von-Guericke UniversitätMagdeburgGermany

Personalised recommendations