Perception & Psychophysics

, Volume 70, Issue 8, pp 1558–1570 | Cite as

One sound or two? Object-related negativity indexes echo perception

  • Lisa D. SandersEmail author
  • Amy S. Joh
  • Rachel E. Keen
  • Richard L. Freyman


The ability to isolate a single sound source among concurrent sources and reverberant energy is necessary for understanding the auditory world. The precedence effect describes a related experimental finding, that when presented with identical sounds from two locations with a short onset asynchrony (on the order of milliseconds), listeners report a single source with a location dominated by the lead sound. Single-cell recordings in multiple animal models have indicated that there are low-level mechanisms that may contribute to the precedence effect, yet psychophysical studies in humans have provided evidence that top-down cognitive processes have a great deal of influence on the perception of simulated echoes. In the present study, event-related potentials evoked by click pairs at and around listeners' echo thresholds indicate that perception of the lead and lag sound as individual sources elicits a negativity between 100 and 250 msec, previously termed the object-related negativity (ORN). Even for physically identical stimuli, the ORN is evident when listeners report hearing, as compared with not hearing, a second sound source. These results define a neural mechanism related to the conscious perception of multiple auditory objects.


Stimulus Onset Asynchrony Sound Source Acoustical Society Inferior Colliculus Mean Amplitude 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alain, C., Arnott, S. R., & Picton, T. W. (2001). Bottom-up and topdown influences on auditory scene analysis: Evidence from eventrelated brain potentials. Journal of Experimental Psychology: Human Perception & Performance, 27, 1072–1089.CrossRefGoogle Scholar
  2. Alain, C., & McDonald, K. L. (2007). Age-related differences in neuro magnetic brain activity underlying concurrent sound perception. Journal of Neuroscience, 27, 1308–1314.PubMedCrossRefGoogle Scholar
  3. Alain, C., Reinke, K., He, Y., Wang, C., & Lobaugh, N. (2005). Hearing two things at once: Neurophysiological indices of speech segregation and identification. Journal of Cognitive Neuroscience, 17, 811–818.PubMedCrossRefGoogle Scholar
  4. Alain, C., Schuler, B. M., & McDonald, K. L. (2002). Neural activity associated with distinguishing concurrent auditory objects. Journal of the Acoustical Society of America, 111, 990–995.PubMedCrossRefGoogle Scholar
  5. Blauert, J. (1997). Spatial hearing: The psychophysics of human sound localization. Cambridge, MA: MIT Press.Google Scholar
  6. Bregman, A. S. (1990). Auditory scene analysis: The perceptual organization of sound. Cambridge, MA: MIT Press.Google Scholar
  7. Chait, M., Poeppel, D., & Simon, J. Z. (2006). Neural response correlates of detection of monaurally and binaurally created pitches in humans. Cerebral Cortex, 16, 835–848.PubMedCrossRefGoogle Scholar
  8. Clifton, R. K. (1987). Breakdown of echo suppression in the precedence effect. Journal of the Acoustical Society of America, 82, 1834–1835.PubMedCrossRefGoogle Scholar
  9. Clifton, R. K., & Freyman, R. L. (1989). Effect of click rate and delay on breakdown of the precedence effect. Perception & Psychophysics, 46, 139–145.Google Scholar
  10. Clifton, R. K., Freyman, R. L., Litovsky, R. Y., & McCall, D. (1994). Listeners' expectations about echoes can raise or lower echo thresholds. Journal of the Acoustical Society of America, 95, 1525–1533.PubMedCrossRefGoogle Scholar
  11. Clifton, R. K., Freyman, R. L., & Meo, J. (2002). What the precedence effect tells us about room acoustics. Perception & Psychophysics, 64, 180–188.CrossRefGoogle Scholar
  12. Damaschke, J., Riedel, H., & Kollmeier, G. (2005). Neural correlates of the precedence effect in auditory evoked potentials. Hearing Research, 205, 157–171.PubMedCrossRefGoogle Scholar
  13. Dyson, B. J., Alain, C., & He, Y. (2005). Effects of visual attentional load on low-level auditory scene analysis. Cognitive, Affective, & Behavioral Neuroscience, 5, 319–338.CrossRefGoogle Scholar
  14. Fitzpatrick, D. C., Kuwada, S., Kim, D. O., Parham, K., & Batra, R. (1999). Responses of neurons to click-pairs as simulated echoes: Auditory nerve to auditory cortex. Journal of the Acoustical Society of America, 106, 3460–3472.PubMedCrossRefGoogle Scholar
  15. Freyman, R. L., Clifton, R. K., & Litovsky, R. Y. (1991). Dynamic processes in the precedence effect. Journal of the Acoustical Society of America, 90, 874–884.PubMedCrossRefGoogle Scholar
  16. Freyman, R. L., & Keen, R. (2006). Constructing and disrupting listeners' models of auditory space. Journal of the Acoustical Society of America, 120, 3957–3965.PubMedCrossRefGoogle Scholar
  17. Grantham, D. W. (1996). Left-right asymmetry in the buildup of echo suppression in normal-hearing adults. Journal of the Acoustical Society of America, 99, 1118–1123.PubMedCrossRefGoogle Scholar
  18. Hansen, J. C., & Hillyard, S. A. (1980). Endogenous brain potentials associated with selective auditory attention. Electroencephalography & Clinical Neurophysiology, 49, 277–290.CrossRefGoogle Scholar
  19. Hartung, K., & Trahiotis, C. (2001). Peripheral auditory processing and investigations of the (“precedence effect”) which utilize successive transient stimuli. Journal of the Acoustical Society of America, 110, 1505–1513.PubMedCrossRefGoogle Scholar
  20. Hautus, M. J., & Johnson, B. W. (2005). Object-related brain potentials associated with the perceptual segregation of a dichotically embedded pitch. Journal of the Acoustical Society of America, 117, 275–280.PubMedCrossRefGoogle Scholar
  21. Hillyard, S. A., Hink, R. F., Schwent, V. L., & Picton, T. W. (1973). Electrical signs of selective attention in the human brain. Science, 182, 177–180.PubMedCrossRefGoogle Scholar
  22. Hiraumi, H., Nagamine, T., Morita, T., Naito, Y., Fukuyama, H., & Ito, J. (2005). Right hemispheric predominance in the segregation of mistuned partials. European Journal of Neuroscience, 22, 1821–1824.PubMedCrossRefGoogle Scholar
  23. Johnson, B. W., Hautus, M., & Clapp, W. C. (2003). Neural activity associated with binaural processes for the perceptual segregation of pitch. Clinical Neurophysiology, 114, 2245–2250.PubMedCrossRefGoogle Scholar
  24. Li, L., Qi, J., He, Y., Alain, C., & Schneider, B. A. (2005). Attribute capture in the precedence effect for long-duration noise sounds. Hearing Research, 202, 235–247.PubMedCrossRefGoogle Scholar
  25. Liebenthal, E., & Pratt, H. (1999). Human auditory cortex electrophysiological correlates of the precedence effect: Binaural echo lateralization suppression. Journal of the Acoustical Society of America, 106, 291–303.CrossRefGoogle Scholar
  26. Litovsky, R. Y., Colburn, H. S., Yost, W. A., & Guzman, S. J. (1999). The precedence effect. Journal of the Acoustical Society of America, 106, 1633–1654.PubMedCrossRefGoogle Scholar
  27. Litovsky, R. Y., Fligor, B. J., & Tramo, M. J. (2002). Functional role of the human inferior colliculus in binaural hearing. Hearing Research, 165, 177–188.PubMedCrossRefGoogle Scholar
  28. Litovsky, R. Y., Hawley, M. L., Fligor, B. J., & Zurek, P. M. (2000). Failure to unlearn the precedence effect. Journal of the Acoustical Society of America, 108, 2345–2352.PubMedCrossRefGoogle Scholar
  29. Litovsky, R. Y., Rakerd, B., Yin, T. C. T., & Hartmann, W. M. (1997). Psychophysical and physiological evidence for a precedence effect in the median sagittal plane. Journal of Neurophysiology, 77, 2223–2226.PubMedGoogle Scholar
  30. Litovsky, R. Y., & Shinn-Cunningham, B. G. (2001). Investigation of the relationship among three common measures of precedence: Fusion, localization dominance, and discrimination suppression. Journal of the Acoustical Society of America, 109, 346–358.PubMedCrossRefGoogle Scholar
  31. Litovsky, R. Y., & Yin, T. C. T. (1998). Physiological studies of the precedence effect in the inferior colliculus of the cat: I. Correlates of psychophysics. Journal of Neurophysiology, 80, 1285–1301.PubMedGoogle Scholar
  32. McDonald, K. L., & Alain, C. (2005). Contribution of harmonicity and location to auditory object formation in free field: Evidence from event-related brain potentials. Journal of the Acoustical Society of America, 118, 1593–1604.PubMedCrossRefGoogle Scholar
  33. Mickey, B. J., & Middlebrooks, J. C. (2001). Responses of auditory cortical neurons to pairs of sounds: Correlates of fusion and localization. Journal of Neurophysiology, 86, 1333–1350.PubMedGoogle Scholar
  34. Näätänen, R. (1982). Processing negativity: An evoked-potential reflection of selective attention. Psychological Bulletin, 92, 605–640.PubMedCrossRefGoogle Scholar
  35. Picton, T. W., & Hillyard, S. A. (1974). Human auditory evoked potentials: II. Effects of attention. Electroencephalography & Clinical Neurophysiology, 36, 191–199.CrossRefGoogle Scholar
  36. Saberi, K., & Antonio, J. V. (2003). Precedence-effect thresholds for a population of untrained listeners as a function of stimulus intensity and interclick interval. Journal of the Acoustical Society of America, 114, 420–429.PubMedCrossRefGoogle Scholar
  37. Saberi, K., & Perrott, D. R. (1990). Lateralization thresholds ob tained under conditions in which the precedence effect is assumed to operate. Journal of the Acoustical Society of America, 87, 1732–1737.PubMedCrossRefGoogle Scholar
  38. Schröger, E., & Eimer, M. (1997). Endogenous covert spatial orienting in audition: (“Cost-benefit”) analyses of reaction times and eventrelated potentials. Quarterly Journal of Experimental Psychology, 50A, 457–474.CrossRefGoogle Scholar
  39. Spence, C. J., & Driver, J. (1994). Covert spatial orienting in audition: Exogenous and endogenous mechanisms. Journal of Experimental Psychology: Human Perception & Performance, 20, 555–574.CrossRefGoogle Scholar
  40. Spitzer, M. W., Bala, A. D. S., & Takahashi, T. T. (2004). A neuronal correlate of the precedence effect is associated with spatial selectivity in the barn owl's auditory midbrain. Journal of Neurophysiology, 92, 2051–2070.PubMedCrossRefGoogle Scholar
  41. Tollin, D. J., & Yin, T. C. T. (2003). Psychophysical investigation of an auditory spatial illusion in cats: The precedence effect. Journal of Neurophysiology, 90, 2149–2162.PubMedCrossRefGoogle Scholar
  42. Wallach, H., Newman, E. B., & Rosenzweig, M. R. (1949). The precedence effect in sound localization. American Journal of Psychology, 62, 315–336.PubMedCrossRefGoogle Scholar
  43. Yin, T. C. T. (1994). Physiological correlates of the precedence effect and summing localization in the inferior colliculus of the cat. Journal of Neuroscience, 14, 5170–5186.PubMedGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2008

Authors and Affiliations

  • Lisa D. Sanders
    • 1
    Email author
  • Amy S. Joh
    • 2
  • Rachel E. Keen
    • 2
  • Richard L. Freyman
    • 1
  1. 1.Department of PsychologyUniversity of MassachusettsAmherst
  2. 2.University of VirginiaCharlottesville

Personalised recommendations