Perception & Psychophysics

, Volume 70, Issue 7, pp 1217–1234 | Cite as

On the dynamic information underlying visual anticipation skill

  • Raoul Huys
  • Nicholas J. Smeeton
  • Nicola J. Hodges
  • Peter J. Beek
  • A. Mark Wiliams
Article

Abstract

What information underwrites visual anticipation skill in dynamic sport situations? We examined this question on the premise that the optical information used for anticipation resides in the dynamic motion structures, or modes, that are inherent in the observed kinematic patterns. In Experiment 1, we analyzed whole-body movements involved in tennis shots to different directions and distances by means of principal component analysis. The shots differed in the few modes that captured most of the variance, especially as a function of shot direction. In Experiments 2 and 3, skilled and less skilled tennis players were asked to anticipate the direction of simulated shots on the basis of kinematic patterns in which only the constituent dynamic structures were manipulated. The results indicated that players predicted shot direction by picking up the information contained in multiple lowdimensional dynamic modes, suggesting that anticipation skill in tennis entails the extraction of this dynamic information from high-dimensional displays.

References

  1. Abernethy, B. (1990). Anticipation in squash: Differences in advance cue utilization between expert and novice players. Journal of Sports Sciences, 8, 17–34.PubMedGoogle Scholar
  2. Abernethy, B., Gill, D. P., Parks, S. L., & Packer, S. T. (2001). Expertise and the perception of kinematic and situational probability information. Perception, 30, 233–252.PubMedCrossRefGoogle Scholar
  3. Abernethy, B., & Russell, D. G. (1987). The relationship between expertise and visual search strategy in a racquet sport. Human Movement Science, 6, 283–319.CrossRefGoogle Scholar
  4. Bernshteîn, N. A. (1967). The co-ordination and regulation of movements. Oxford: Pergamon.Google Scholar
  5. Bruno, N., & Cutting, J. E. (1988). Minimodularity and the perception of layout. Journal of Experimental Psychology: General, 117, 161–170.CrossRefGoogle Scholar
  6. Daffertshofer, A., Lamoth, C. J. C., Meijer, O. G., & Beek, P. J. (2004). PCA in studying coordination and variability: A tutorial. Clinical Biomechanics, 19, 415–428.PubMedCrossRefGoogle Scholar
  7. Dittrich, W. H., Troscianko, T., Lea, S. E. G., & Morgan, D. (1996). Perception of emotion from dynamic point-light displays represented in dance. Perception, 25, 727–738.PubMedCrossRefGoogle Scholar
  8. Haken, H. (1977). Synergetics: An introduction. Nonequilibrium phase transitions and self-organization in physics, chemistry, and biology. Berlin: Springer.Google Scholar
  9. Haken, H. (1996). Principles of brain functioning: A synergetic approach to brain activity, behavior, and cognition. Berlin: Springer.Google Scholar
  10. Haken, H. (2000). Information and self-organization: A macroscopic approach to complex systems. Berlin: Springer.Google Scholar
  11. Haken, H. (2004). Synergetic computers and cognition: A top-down approach to neural nets. Berlin: Springer.Google Scholar
  12. Haken, H., Kelso, J. A. S., & Bunz, H. (1985). A theoretical model of phase transitions in human hand movements. Biological Cybernetics, 51, 347–356.PubMedCrossRefGoogle Scholar
  13. Haken, H., Kelso, J. A. S., Fuchs, A., & Pandya, A. S. (1990). Dynamic pattern recognition of coordinated biological motion. Neural Networks, 3, 395–401.CrossRefGoogle Scholar
  14. Huys, R., & Beek, P. J. (2002). The coupling between point-of-gaze and ball movements in three-ball cascade juggling: The effects of expertise, pattern and tempo. Journal of Sports Sciences, 20, 171–186.PubMedCrossRefGoogle Scholar
  15. Huys, R., Daffertshofer, A., & Beek, P. J. (2004). Multiple time scales and subsystem embedding in the learning of juggling. Human Movement Science, 23, 315–336.PubMedCrossRefGoogle Scholar
  16. Johansson, G. (1973). Visual perception of biological motion and a model for its analysis. Perception & Psychophysics, 14, 201–211.CrossRefGoogle Scholar
  17. Johansson, G. (1976). Spatio-temporal differentiation and integration in visual motion perception. Psychological Research, 38, 379–393.PubMedCrossRefGoogle Scholar
  18. Kelso, J. A. S. (1981). On the oscillatory basis of movement. Bulletin of the Psychonomic Society, 18, 63.Google Scholar
  19. Kelso, J. A. S. (1984). Phase transitions and critical behavior in human bimanual coordination. American Journal of Physiology, 246(6, Pt. 2), R1000-R1004.PubMedGoogle Scholar
  20. Kelso, J. A. S. (1995). Dynamic patterns: The self-organization of brain and behavior. Cambridge, MA: MIT Press.Google Scholar
  21. Kugler, P. N., Kelso, J. A. S., & Turvey, M. T. (1980). On the concept of coordinative structures as dissipative structures: I. Theoretical lines of convergence. In G. E. Stelmach & J. Requin (Eds.), Tutorials in motor behavior (pp. 3–47). Amsterdam: North-Holland.CrossRefGoogle Scholar
  22. Longstaff, M. G., & Heath, R. A. (2003). The influence of motor system degradation on the control of handwriting movements: A dynamical systems analysis. Human Movement Science, 22, 91–110.PubMedCrossRefGoogle Scholar
  23. Mitra, S., Amazeen, P. G., & Turvey, M. T. (1998). Intermediate motor learning as decreasing active (dynamical) degrees of freedom. Human Movement Science, 17, 17–65.CrossRefGoogle Scholar
  24. Muchisky, M. M., & Bingham, G. P. (2002). Trajectory forms as a source of information about events. Perception & Psychophysics, 64, 15–31.CrossRefGoogle Scholar
  25. Newell, K. M., Liu, Y.-T., & Mayer-Kress, G. (2001). Time scales in motor learning and development. Psychological Review, 108, 57–82.PubMedCrossRefGoogle Scholar
  26. Newell, K. M., & Vaillancourt, D. E. (2001). Dimensional change in motor learning. Human Movement Science, 20, 695–715.PubMedCrossRefGoogle Scholar
  27. Pollick, F. E., Fidopiastis, C., & Braden, V. (2001). Recognising the style of spatially exaggerated tennis serves. Perception, 30, 323–338.PubMedCrossRefGoogle Scholar
  28. Post, A. A., Daffertshofer, A., & Beek, P. J. (2000). Principal components in three-ball cascade juggling. Biological Cybernetics, 82, 143–152.PubMedCrossRefGoogle Scholar
  29. Runeson, S. (1983). On visual perception of dynamic events (Acta Universitatis Upsaliensis: Studia Psychologica Upsaliensa). Stockholm: Almqvist & Wiksell. (Original work published 1977)Google Scholar
  30. Runeson, S., & Frykholm, G. (1981). Visual perception of lifted weight. Journal of Experimental Psychology: Human Perception & Performance, 7, 733–740.CrossRefGoogle Scholar
  31. Runeson, S., & Frykholm, G. (1983). Kinematic specification of dynamics as an informational basis for person-and-action perception: Expectation, gender recognition, and deceptive intention. Journal of Experimental Psychology: General, 112, 585–615.CrossRefGoogle Scholar
  32. Scholz, J. P., & Schoner, G. (1999). The uncontrolled manifold concept: Identifying control variables for a functional task. Experimental Brain Research, 126, 289–306.CrossRefGoogle Scholar
  33. Shim, J., Carlton, L. G., Chow, J. W., & Chae, W.-S. (2005). The use of anticipatory visual cues by highly skilled tennis players. Journal of Motor Behavior, 37, 164–175.PubMedCrossRefGoogle Scholar
  34. Smeeton, N. J., Williams, A. M., Hodges, N. J., & Ward, P. (2005). The relative effectiveness of various instructional approaches in developing anticipation skill. Journal of Experimental Psychology: Applied, 11, 98–110.PubMedCrossRefGoogle Scholar
  35. Strogatz, S. H. (1994). Nonlinear dynamics and chaos: With applications to physics, biology, chemistry, and engineering. Reading, MA: Addison-Wesley.Google Scholar
  36. Troje, N. F. (2002). Decomposing biological motion: A framework for analysis and synthesis of human gait patterns. Journal of Vision, 2, 371–387.PubMedCrossRefGoogle Scholar
  37. Turvey, M. T. (1990). Coordination. American Psychologist, 45, 938–953.PubMedCrossRefGoogle Scholar
  38. van Santvoord, A. A. M., & Beek, P. J. (1994). Phasing and the pickup of optical information in cascade juggling. Ecological Psychology, 6, 239–263.CrossRefGoogle Scholar
  39. Ward, P., Williams, A. M., & Bennett, S. J. (2002). Visual search and biological motion perception in tennis. Research Quarterly for Exercise & Sport, 73, 107–112.Google Scholar
  40. Watanabe, O., & Kikuchi, M. (2006). Hierarchical integration of individual motions in locally paired-dot stimuli. Vision Research, 46, 82–90.PubMedCrossRefGoogle Scholar
  41. Westhoff, C., & Troje, N. F. (2007). Kinematic cues for person identification from biological motion. Perception & Psychophysics, 69, 241–253.CrossRefGoogle Scholar
  42. Williams, A. M., Davids, K., & Williams, J. G. (1999). Visual perception and action in sport. London: Spon.Google Scholar
  43. Williams, A. M., & Ericsson, K. A. (2005). Perceptual—cognitive expertise in sport: Some considerations when applying the expert performance approach. Human Movement Science, 24, 283–307.PubMedCrossRefGoogle Scholar
  44. Williams, A. M., Ward, P., Knowles, J. M., & Smeeton, N. J. (2002). Anticipation skill in a real-world task: Measurement, training, and transfer in tennis. Journal of Experimental Psychology: Applied, 8, 259–270.PubMedCrossRefGoogle Scholar
  45. Zar, J. H. (1996). Biostatistical analysis (3rd ed.). Upper Saddle River, NJ: Prentice Hall.Google Scholar

Copyright information

© Psychonomic Society, Inc. 2008

Authors and Affiliations

  • Raoul Huys
    • 1
  • Nicholas J. Smeeton
    • 2
    • 3
  • Nicola J. Hodges
    • 4
  • Peter J. Beek
    • 5
  • A. Mark Wiliams
    • 2
  1. 1.UMR 6233 Institut des Sciences du Mouvement “Etienne-Jules Marey,”Université de la Méditerranée, Faculté des Sciences du SportMarseille CEDEX 09France
  2. 2.Liverpool John Moores UniversityLiverpoolEngland
  3. 3.University of BrightonEastbourneEngland
  4. 4.University of British ColumbiaVancouverCanada
  5. 5.Vrije Universiteit AmsterdamAmsterdamThe Netherlands

Personalised recommendations