Psychonomic Bulletin & Review

, Volume 17, Issue 6, pp 895–899 | Cite as

Unilateral muscle contractions enhance creative thinking

  • Abraham Goldstein
  • Ketty Revivo
  • Michal Kreitler
  • Nili Metuki
Brief Report

Abstract

Following the notion of relative importance of the right hemisphere (RH) in creative thinking, we explored the possibility of enhancing creative problem solving by artificially activating the RH ahead of time using unilateral hand contractions. Participants attempted to complete the Remote Associates Test after squeezing a ball with either their left or right hand. As predicted, participants who contracted their left hand (thus activating the RH) achieved higher scores than those who used their right hand and those who did not contract either hand. Our findings indicate that tilting the hemispheric balance toward the processing mode of one hemisphere by motor activation can greatly influence the outcome of thought processes. Regardless of the specific mechanism involved, this technique has the potential for acting as a therapeutic or remedial manipulation and could have wide applications in aiding individuals with language impairments or other disorders that are believed to be related to hemispheric imbalances.

References

  1. Arzouan, Y., Goldstein, A., & Faust, M. (2007). Dynamics of hemispheric activity during metaphor comprehension: Electrophysiological measures. NeuroImage, 36, 222–231. doi: 10.1016/j.neuroimage.2007.02.015PubMedCrossRefGoogle Scholar
  2. Bassel, C., & Schiff, B. B. (2001). Unilateral vibrotactile stimulation induces emotional biases in cognition and performance. Neuropsychologia, 39, 282–287. doi:10.1016/S0028-3932(00)00116-0PubMedCrossRefGoogle Scholar
  3. Baumann, N., Kuhl, J., & Kazén, M. (2005). Left-hemispheric activation and self-infiltration: Testing a neuropsychological model of internalization. Motivation & Emotion, 29, 135–163. doi:10.1007/s11031-005-9439-xCrossRefGoogle Scholar
  4. Beeman, M. J., & Bowden, E. M. (2000). The right hemisphere maintains solution-related activation for yet-to-be-solved problems. Memory & Cognition, 28, 1231–1241.CrossRefGoogle Scholar
  5. Bultitude, J. H., & Woods, J. M. (2010). Adaptation to leftward-shifting prisms reduces the global processing bias of healthy individuals. Neuropsychologia, 48, 1750–1756. doi:10.1016/j.neuropsychologia.2010.02.024PubMedCrossRefGoogle Scholar
  6. Davidson, R. J. (1992). Anterior cerebral asymmetry and the nature of emotion. Brain & Cognition, 20, 125–151. doi:10.1016/0278-2626(92)90065-TCrossRefGoogle Scholar
  7. Drake, R. A. (1991). Processing persuasive arguments: Recall and recognition as a function of agreement and manipulated activation asymmetry. Brain & Cognition, 15, 83–94. doi:10.1016/0278-2626(91)90017-3CrossRefGoogle Scholar
  8. Duncan, D. B. (1955). Multiple range and multiple F tests. Biometrics, 11, 1–42.CrossRefGoogle Scholar
  9. Fiore, S. M., & Schooler, J. W. (1998). Right hemisphere contributions to creative problem solving: Converging evidence for divergent thinking. In M. Beeman & C. Chiarello (Eds.), Right hemisphere language comprehension: Perspectives from cognitive neuroscience (pp. 349–371). Mahwah,NJ: Erlbaum.Google Scholar
  10. Friedman, R. S., & Förster, J. (2002). The influence of approach and avoidance motor actions on creative cognition. Journal of Experimental Social Psychology, 38, 41–55. doi:10.1006/jesp.2001.1488CrossRefGoogle Scholar
  11. Friedman, R. S., & Förster, J. (2005). Effects of motivational cues on perceptual asymmetry: Implications for creativity and analytical problem solving. Journal of Personality & Social Psychology, 88, 263–275. doi:10.1037/0022-3514.88.2.263CrossRefGoogle Scholar
  12. Goel, V., Tierney, M., Sheesley, L., Bartolo, A., Vartanian, O., & Grafman, J. (2007). Hemispheric specialization in human prefrontal cortex for resolving certain and uncertain inferences. Cerebral Cortex, 17, 2245–2250. doi:10.1093/cercor/bhl132PubMedCrossRefGoogle Scholar
  13. Goel, V., & Vartanian, O. (2005). Dissociating the roles of right ventral lateral and dorsal lateral prefrontal cortex in generation and maintenance of hypotheses in set-shift problems. Cerebral Cortex, 15, 1170–1177. doi:10.1093/cercor/bhh217PubMedCrossRefGoogle Scholar
  14. Grabner, R. H., Fink, A., & Neubauer, A. C. (2007). Brain correlates of self-rated originality of ideas: Evidence from event-related power and phase-locking changes in the EEG. Behavioral Neuroscience, 121, 224–230. doi:10.1037/0735-7044.121.1.224PubMedCrossRefGoogle Scholar
  15. Harmon-Jones, E. (2006). Unilateral right-hand contractions cause contralateral alpha power suppression and approach motivational affective experience. Psychophysiology, 43, 598–603. doi:10.1111/j.1469-8986.2006.00465.xPubMedCrossRefGoogle Scholar
  16. Howard-Jones, P. A., Blakemore, S.-J., Samuel, E. A., Summers, I. R., & Claxton, G. (2005). Semantic divergence and creative story generation: An fMRI investigation. Cognitive Brain Research, 25, 240–250. doi:10.1016/j.cogbrainres.2005.05.013PubMedCrossRefGoogle Scholar
  17. Jung-Beeman, M. (2005). Bilateral brain processes for comprehending natural language. Trends in Cognitive Sciences, 9, 712–718. doi: 10.1016/j.tics.2005.09.009Google Scholar
  18. Jung-Beeman, M., Bowden, E. M., Haberman, J., Frymiare, J. L., Arambel-Liu, S., Greenblatt, R., et al. (2004). Neural activity when people solve verbal problems with insight. PLoS Biology, 2, 500–510. doi: 10.1371 /journal.pbio.0020097CrossRefGoogle Scholar
  19. Kinsbourne, M. (1970). The cerebral basis of lateral asymmetries in attention. Acta Psychologica, 33, 193–201. doi:10.1016/0001-6918(70)90132-0PubMedCrossRefGoogle Scholar
  20. Kounios, J., Fleck, J. I., Green, D. L., Payne, L., Stevenson, J. L., Bowden, E. M., & Jung-Beeman, M. (2008). The origins of insight in resting-state brain activity. Neuropsychologia, 46, 281–291. doi: 10.1016/j.neuropsychologia.2007.07.013PubMedCrossRefGoogle Scholar
  21. Mednick, S. A. (1962). The associative basis of the creative process. Psychological Review, 69, 220–232. doi:10.1037/h0048850PubMedCrossRefGoogle Scholar
  22. Mednick, S. A. (1968). Remote Associates Test. Journal of Creative Behavior, 2, 213–214.Google Scholar
  23. Mihov, K. M., Denzler, M., & Förster, J. (2010). Hemispheric specialization and creative thinking: A meta-analytic review of lateralization of creativity. Brain & Cognition, 72, 442–448. doi:10.1016/j.bandc.2009.12.007CrossRefGoogle Scholar
  24. Nevo, B., & Levin, I. (1978). Remote Associates Test: Assessment of creativity in Hebrew. Megamot, 24, 87–98.Google Scholar
  25. Peterson, C. K., & Harmon-Jones, E. (2008). Proneness to hypomania predicts EEG coherence between left motor cortex and left prefrontal cortex. Biological Psychology, 78, 216–219. doi: 10.1016/j.biopsycho.2008.01.011PubMedCrossRefGoogle Scholar
  26. Peterson, C. K., Shackman, A. J., & Harmon-Jones, E. (2008). The role of asymmetrical frontal cortical activity in aggression. Psychophysiology, 45, 86–92. doi:10.1111/j.1469-8986.2007.00597.xPubMedGoogle Scholar
  27. Pfurtscheller, G., Neuper, C., Andrew, C., & Edlinger, G. (1997). Foot and hand area mu rhythms. International Journal of Psychophysiology, 26, 121–135. doi:10.1016/S0167-8760(97)00760-5PubMedCrossRefGoogle Scholar
  28. Sandkühler, S., & Bhattacharya, J. (2008). Deconstructing insight: EEG correlates of insightful problem solving. PLoS ONE, 3, e1459. doi: 10.1371 /journal.pone.0001459PubMedCrossRefGoogle Scholar
  29. Schiff, B. B., Esses, V. M., & Lamon, M. (1992). Unilateral facial contractions produce mood effects on social cognitive judgments. Cognition & Emotion, 6, 357–368. doi: 10.1080/02699939208409691CrossRefGoogle Scholar
  30. Schiff, B. B., Guirguis, M., Kenwood, C., & Herman, C. P. (1998). Asymmetrical hemispheric activation and behavioral persistence: Effects of unilateral muscle contractions. Neuropsychology, 12, 526–532.PubMedCrossRefGoogle Scholar
  31. Schiff, B. B., & Lamon, M. (1989). Inducing emotion by unilateral contraction of facial muscles: A new look at hemispheric specialization and the experience of emotion. Neuropsychologia, 27, 923–935. doi: 10.1016/0028-3932(89)90068-7PubMedCrossRefGoogle Scholar
  32. Schiff, B. B., & Lamon, M. (1994). Inducing emotion by unilateral contraction of hand muscles. Cortex, 30, 247–254.PubMedGoogle Scholar
  33. Seger, C. A., Desmond, J. E., Glover, G. H., & Gabrieli, J. D. E. (2000). Functional magnetic resonance imaging evidence for righthemisphere involvement in processing unusual semantic relationships. Neuropsychology, 14, 361–369.PubMedCrossRefGoogle Scholar
  34. Shrira, I., & Martin, L. L. (2005). Stereotyping, self-affirmation, and the cerebral hemispheres. Personality & Social Psychology Bulletin, 31, 846–856. doi:10.1177/0146167204272232CrossRefGoogle Scholar
  35. Watson, D., Clark, L. A., & Tellegen, A. (1988). Development and validation of brief measures of positive and negative affect: The PANAS scales. Journal of Personality & Social Psychology, 54, 1063–1070.CrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2010

Authors and Affiliations

  • Abraham Goldstein
    • 1
  • Ketty Revivo
    • 1
  • Michal Kreitler
    • 1
  • Nili Metuki
    • 1
  1. 1.Gonda Brain Research CenterBar-Ilan UniversityRamat GanIsrael

Personalised recommendations