Abstract
We propose a sampling-based Bayesian t test that allows researchers to quantify the statistical evidence in favor of the null hypothesis. This Savage—Dickey (SD) t test is inspired by the Jeffreys—Zellner—Siow (JZS) t test recently proposed by Rouder, Speckman, Sun, Morey, and Iverson (2009). The SD test retains the key concepts of the JZS test but is applicable to a wider range of statistical problems. The SD test allows researchers to test order restrictions and applies to two-sample situations in which the different groups do not share the same variance.
References
Batchelder, W. H., & Riefer, D. M. (1999). Theoretical and empirical review of multinomial process tree modeling. Psychonomic Bulletin & Review, 6, 57–86.
Berger, J. O., & Jefferys, W. H. (1992). The application of robust Bayesian analysis to hypothesis testing and Occam’s razor. Statistical Methods & Applications, 1, 17–32.
Berger, J. O., & Pericchi, L. R. (1996). The intrinsic Bayes factor for model selection and prediction. Journal of the American Statistical Association, 91, 109–122.
Box, G. E. P., & Tiao, G. C. (1973). Bayesian inference in statistical analysis. Reading, MA: Addison-Wesley.
Busemeyer, J. R., & Stout, J. C. (2002). A contribution of cognitive decision models to clinical assessment: Decomposing performance on the Bechara gambling task. Psychological Assessment, 14, 253–262.
Carlin, B. P., & Louis, T. A. (2000). Bayes and empirical Bayes methods for data analysis (2nd ed.). London: Chapman & Hall.
Dickey, J. M., & Lientz, B. P. (1970). The weighted likelihood ratio, sharp hypotheses about chances, the order of a Markov chain. Annals of Mathematical Statistics, 41, 214–226.
Edwards, W., Lindman, H., & Savage, L. J. (1963). Bayesian statistical inference for psychological research. Psychological Review, 70, 193–242.
Gamerman, D., & Lopes, H. F. (2006). Markov chain Monte Carlo: Stochastic simulation for Bayesian inference. Boca Raton, FL: Chapman & Hall/CRC.
Gelman, A., & Hill, J. (2007). Data analysis using regression and multilevel/hierarchical models. Cambridge: Cambridge University Press.
Gilks, W. R., Thomas, A., & Spiegelhalter, D. J. (1994). A language and program for complex Bayesian modelling. The Statistician, 43, 169–177.
Hedges, L. (1981). Distribution theory for Glass’s estimator of effect size and related estimators. Journal of Educational & Behavioral Statistics, 6, 107.
Hoijtink, H., Klugkist, I., & Boelen, P. (2008). Bayesian evaluation of informative hypotheses that are of practical value for social scientists. New York: Springer.
Jeffreys, H. (1961). Theory of probability. Oxford: Oxford University Press.
Kass, R. E., & Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical Association, 90, 377–395.
Killeen, P. R. (2007). Replication statistics as a replacement for significance testing: Best practices in scientific decision-making. In J. W. Osborne (Ed.), Best practices in quantitative methods (pp. 103–124). Thousand Oaks, CA: Sage.
Kim, S., & Cohen, A. (1998). On the Behrens-Fisher problem: A review. Journal of Educational & Behavioral Statistics, 23, 356–377.
Klugkist, I., Laudy, O., & Hoijtink, H. (2005). Inequality constrained analysis of variance: A Bayesian approach. Psychological Methods, 10, 477–493.
Kruschke, J. K. (1992). ALCOVE: An exemplar-based connectionist model of category learning. Psychological Review, 99, 22–44.
Lauritzen, S. L. (1996). Graphical models. Oxford: Oxford University Press, Clarendon Press.
Lee, M. D. (2008). Three case studies in the Bayesian analysis of cognitive models. Psychonomic Bulletin & Review, 15, 1–15.
Liang, F., Paulo, R., Molina, G., Clyde, M., & Berger, J. (2008). Mixtures of g priors for Bayesian variable selection. Journal of the American Statistical Association, 103, 410.
Lunn, D. J., Thomas, A., Best, N., & Spiegelhalter, D. (2000). WinBUGS—a Bayesian modelling framework: Concepts, structure, and extensibility. Statistics & Computing, 10, 325–337.
Moreno, E., Bertolino, F., & Racugno, W. (1999). Default Bayesian analysis of the Behrens-Fisher problem. Journal of Statistical Planning & Inference, 81, 323–333.
Myung, I. J., & Pitt, M. A. (1997). Applying Occam’s razor in modeling cognition: A Bayesian approach. Psychonomic Bulletin & Review, 4, 79–95.
Nosofsky, R. (1986). Attention, similarity, and the identification-categorization relationship. Journal of Experimental Psychology: General, 115, 39–57.
O’Hagan, A., & Forster, J. (2004). Kendall’s advanced theory of statistics: Vol. 2B. Bayesian inference (2nd ed.). London: Arnold.
Raftery, A. E. (1995). Bayesian model selection in social research. In P. V. Marsden (Ed.), Sociological methodology (pp. 111–196). Cambridge: Blackwells.
Richard, F. D., Bond, C. F. J., & Stokes-Zoota, J. J. (2003). One hundred years of social psychology quantitatively described. Review of General Psychology, 7, 331–363.
Rouder, J. N., & Lu, J. (2005). An introduction to Bayesian hierarchical models with an application in the theory of signal detection. Psychonomic Bulletin & Review, 12, 573–604.
Rouder, J. N., Lu, J., Morey, R. D., Sun, D., & Speckman, P. L. (2008). A hierarchical process dissociation model. Journal of Experimental Psychology: General, 137, 370–389.
Rouder, J. N., Lu, J., Sun, D., Speckman, P., Morey, R., & Naveh-Benjamin, M. (2007). Signal detection models with random participant and item effects. Psychometrika, 72, 621–642.
Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G. (2009). Bayesian t tests for accepting and rejecting the null hypothesis. Psychonomic Bulletin & Review, 16, 225–237.
Shiffrin, R. M., Lee, M. D., Kim, W., & Wagenmakers, E.-J. (2008). A survey of model evaluation approaches with a tutorial on hierarchical Bayesian methods. Cognitive Science, 32, 1248–1284.
Spiegelhalter, D. J. (1998). Bayesian graphical modelling: A case-study in monitoring health outcomes. Applied Statistics, 47, 115–133.
Stone, C. J., Hansen, M. H., Kooperberg, C., & Truong, Y. K. (1997). Polynomial splines and their tensor products in extended linear modeling (with discussion). Annals of Statistics, 25, 1371–1470.
Vandekerckhove, J., Tuerlinckx, F., & Lee, M. D. (2008). A Bayesian approach to diffusion process models of decision-making. In V. Sloutsky, B. Love, & K. McRae (Eds.), Proceedings of the 30th Annual Conference of the Cognitive Science Society (pp. 1429–1434). Austin, TX: Cognitive Science Society.
Verdinelli, I., & Wasserman, L. (1995). Computing Bayes factors using a generalization of the Savage-Dickey density ratio. Journal of the American Statistical Association, 90, 614–618.
Wagenmakers, E.-J. (2007). A practical solution to the pervasive problems of p values. Psychonomic Bulletin & Review, 14, 779–804.
Wagenmakers, E.-J. (2009). Methodological and empirical developments for the Ratcliff diffusion model of response times and accuracy. European Journal of Cognitive Psychology, 21, 641–671.
Wagenmakers, E.-J., Lee, M. D., Lodewyckx, T., & Iverson, G. (2008). Bayesian versus frequentist inference. In H. Hoijtink, I. Klugkist, & P. A. Boelen (Eds.), Bayesian evaluation of informative hypotheses (pp. 181–207). New York: Springer.
Wasserman, L. (2000). Bayesian model selection and model averaging. Journal of Mathematical Psychology, 44, 92–107.
Weaver, R. (2008). Parameters, predictions, and evidence in computational modeling: A statistical view informed by ACT-R. Cognitive Science, 32, 1349–1375.
Wetzels, R., Vandekerckhove, J., Tuerlinckx, F., & Wagenmakers, E.-J. (in press). Bayesian parameter estimation in the expectancy valence model of the Iowa gambling task. Journal of Mathematical Psychology.
Wilkinson, L., & the Task Force on Statistical Inference (1999). Statistical methods in psychology journals: Guidelines and explanations. American Psychologist, 54, 594–604.
Zellner, A. (1986). On assessing prior distributions and Bayesian regression analysis with g-prior distributions. In P. K. Goel & A. Zellner (Eds.), Bayesian inference and decision techniques: Essays in honor of Bruno de Finetti (pp. 233–243). Amsterdam: North-Holland.
Zellner, A., & Siow, A. (1980). Posterior odds ratios for selected regression hypotheses. In J. M. Bernardo, M. H. DeGroot, D. V. Lindley, & A. F. M. Smith (Eds.), Bayesian statistics (pp. 585–603). Valencia: Valencia University Press.
Author information
Affiliations
Corresponding author
Additional information
This research was supported by a Vidi grant from the Dutch Organization for Scientific Research (NWO). The SD computer code and the data of Dr. Smith’s hypothetical experiment can be found on the first author’s Web site, www.ruudwetzels.com.
Rights and permissions
About this article
Cite this article
Wetzels, R., Raaijmakers, J.G.W., Jakab, E. et al. How to quantify support for and against the null hypothesis: A flexible WinBUGS implementation of a default Bayesian t test. Psychonomic Bulletin & Review 16, 752–760 (2009). https://doi.org/10.3758/PBR.16.4.752
Received:
Accepted:
Issue Date:
Keywords
- Posterior Distribution
- Psychonomic Bulletin
- Order Restriction
- Iowa Gambling Task
- Posterior Odds