Psychonomic Bulletin & Review

, Volume 15, Issue 1, pp 223–229

Selective storage and maintenance of an object’s features in visual working memory

Brief Reports


It has been shown that we have a highly capacity-limited representational space with which to store objects in visual working memory. However, most objects are composed of multiple feature attributes, and it is unknown whether observers can voluntarily store a single attribute of an object without necessarily storing all of its remaining features. In this study, we used a masking paradigm to measure the efficiency of encoding, and neurophysiological recordings to directly measure visual working memory maintenance while subjects viewed multifeature objects and were required to remember only a single feature or all of the features of the objects. We found that measures of both encoding and maintenance varied systematically as a function of which object features were task relevant. These experiments show that individuals can control which features of an object are selectively stored in working memory.


  1. Averbach, E., & Coriel, A. S. (1961). Short-term memory in vision. Bell System Technical Journal, 40, 309–328.Google Scholar
  2. Bisley, J. W., & Goldberg, M. E. (2003). Neuronal activity in the lateral intraparietal area and spatial attention. Science, 299, 81–86.PubMedCrossRefGoogle Scholar
  3. Chaffee, M. V., & Goldman-Rakic, P. S. (1998). Matching patterns of activity in primate prefrontal area 8a and parietal area 7ip neurons during a spatial working memory task. Journal of Neurophysiology, 79, 2919–2940.Google Scholar
  4. Chun, M. M., & Potter, M. C. (1995). A two-stage model for multiple target detection in rapid serial visual presentation. Journal of Experimental Psychology: Human Perception & Performance, 21, 109–127.CrossRefGoogle Scholar
  5. Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral & Brain Sciences, 24, 87–185.CrossRefGoogle Scholar
  6. Duncan, J. (1984). Selective attention and the organization of visual information. Journal of Experimental Psychology: General, 113, 501–517.CrossRefGoogle Scholar
  7. Gegenfurtner, K. R., & Sperling, G. (1993). Information transfer in iconic memory experiments. Journal of Experimental Psychology: Human Perception & Performance, 19, 845–866.CrossRefGoogle Scholar
  8. Irwin, D. E., & Andrews, R. V. (1996). Integration and accumulation of information across saccadic eye movements. In T. Inui & J. L. McClelland (Eds.), Attention and performance XVI: Information integration in perception and communication (pp. 125–155). Cambridge, MA: MIT Press, Bradford Books.Google Scholar
  9. Kristjansson, A. (2006a). Simultaneous priming along multiple dimensions in a visual search task. Vision Research, 46, 2554–2570.PubMedCrossRefGoogle Scholar
  10. Kristjansson, A. (2006b). Surface assignment modulates object formation for visual short-term memory. Perception, 35, 865–881.PubMedCrossRefGoogle Scholar
  11. Loftus, G. R., & Loftus, E. F. (1988). Essence of statistics (2nd ed.). New York: Random House.Google Scholar
  12. Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390, 279–281.PubMedCrossRefGoogle Scholar
  13. Maljkovic, V., & Nakayama, K. (1994). Priming of pop-out: I. Role of features. Memory & Cognition, 22, 657–672.Google Scholar
  14. McCollough, A. W., Machizawa, M. G., & Vogel, E. K. (2007). Electrophysiological measures of maintaining representations in visual working memory. Cerebral Cortex, 43, 77–94.Google Scholar
  15. Miller, E. K., & Desimone, R. (1991). A neural mechanism for working and recognition memory in inferior temporal cortex. Science, 254, 1377–1379.PubMedCrossRefGoogle Scholar
  16. Miller, E. K., Erickson, C. A., & Desimone, R. (1996). Neural mechanisms of visual working memory in prefrontal cortex of the macaque. Journal of Neuroscience, 16, 5154–5167.PubMedGoogle Scholar
  17. Miller, E. K., Li, L., & Desimone, R. (1993). Activity of neurons in anterior inferior temporal cortex during a short-term memory task. Journal of Neuroscience, 13, 1460–1478.PubMedGoogle Scholar
  18. O’Craven, K. M., Downing, P. E., & Kanwisher, N. (1999). fMRI evidence for objects as the units of attentional selection. Nature, 401, 584–587.PubMedCrossRefGoogle Scholar
  19. Pashler, H. (1988). Familiarity and visual change detection. Perception & Psychophysics, 44, 369–378.Google Scholar
  20. Phillips, W. A. (1974). On the distinction between sensory storage and short-term visual memory. Perception & Psychophysics, 16, 283–290.Google Scholar
  21. Potter, M. C. (1976). Short-term conceptual memory for pictures. Journal of Experimental Psychology: Human Learning & Memory, 2, 509–522.CrossRefGoogle Scholar
  22. Rainer, G., Asaad, W. F., & Miller, E. K. (1998). Selective representation of relevant information by neurons in the primate prefrontal cortex. Nature, 393, 577–579.PubMedCrossRefGoogle Scholar
  23. Rao, S. C., Rainer, G., & Miller, E. K. (1997). Integration of what and where in the primate prefrontal cortex. Science, 276, 821–824.PubMedCrossRefGoogle Scholar
  24. Schmidt, B. K., Vogel, E. K., Woodman, G. F., & Luck, S. J. (2002). Voluntary and automatic attentional control of visual working memory. Perception & Psychophysics, 64, 754–763.CrossRefGoogle Scholar
  25. Sereno, A. B., & Amador, S. C. (2006). Attention and memory-related responses of neurons in the lateral intraparietal area during spatial and shape-delayed match-to-sample tasks. Journal of Neurophysiology, 95, 1078–1098.PubMedCrossRefGoogle Scholar
  26. Sperling, G. (1960). The information available in brief visual presentations. Psychological Monographs, 74 (Whole No. 498).Google Scholar
  27. Stefurak, D. L., & Boynton, R. M. (1986). Independence of memory for categorically different colors and shapes. Perception & Psychophysics, 39, 164–174.Google Scholar
  28. Vecera, S. P., & Farah, M. J. (1994). Does visual attention select objects or locations? Journal of Experimental Psychology: General, 123, 146–160.CrossRefGoogle Scholar
  29. Vogel, E. K., Luck, S. J., & Shapiro, K. L. (1998). Electrophysiological evidence for a postperceptual locus of suppression during the attentional blink. Journal of Experimental Psychology: Human Perception & Performance, 24, 1656–1674.CrossRefGoogle Scholar
  30. Vogel, E. K., & Machizawa, M. G. (2004). Neural activity predicts individual differences in visual working memory capacity. Nature, 428, 748–751.PubMedCrossRefGoogle Scholar
  31. Vogel, E. K., McCollough, A. W., & Machizawa, M. G. (2005). Neural measures reveal individual differences in controlling access to working memory. Nature, 438, 500–503.PubMedCrossRefGoogle Scholar
  32. Vogel, E. K., Woodman, G. F., & Luck, S. J. (2001). Storage of features, conjunctions, and objects in visual working memory. Journal of Experimental Psychology: Human Perception & Performance, 27, 92–114.CrossRefGoogle Scholar
  33. Vogel, E. K., Woodman, G. F., & Luck, S. J. (2006). The time course of consolidation in visual working memory. Journal of Experimental Psychology: Human Perception & Performance, 32, 1436–1451.CrossRefGoogle Scholar
  34. Wheeler, M., & Treisman, A. M. (2002). Binding in short-term visual memory. Journal of Experimental Psychology: General, 131, 48–64.CrossRefGoogle Scholar
  35. Woodman, G. F., & Vogel, E. K. (2005). Fractionating working memory: Encoding and maintenance are independent processes. Psychological Science, 16, 106–113.PubMedCrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2008

Authors and Affiliations

  1. 1.Department of PsychologyVanderbilt UniversityNashville
  2. 2.University of OregonEugene

Personalised recommendations