Psychonomic Bulletin & Review

, Volume 15, Issue 1, pp 223–229 | Cite as

Selective storage and maintenance of an object’s features in visual working memory

  • Geoffrey F. Woodman
  • Edward K. Vogel
Brief Reports


It has been shown that we have a highly capacity-limited representational space with which to store objects in visual working memory. However, most objects are composed of multiple feature attributes, and it is unknown whether observers can voluntarily store a single attribute of an object without necessarily storing all of its remaining features. In this study, we used a masking paradigm to measure the efficiency of encoding, and neurophysiological recordings to directly measure visual working memory maintenance while subjects viewed multifeature objects and were required to remember only a single feature or all of the features of the objects. We found that measures of both encoding and maintenance varied systematically as a function of which object features were task relevant. These experiments show that individuals can control which features of an object are selectively stored in working memory.


Stimulus Onset Asynchrony Retention Interval Rapid Serial Visual Presentation Visual Working Memory Color Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Averbach, E., & Coriel, A. S. (1961). Short-term memory in vision. Bell System Technical Journal, 40, 309–328.Google Scholar
  2. Bisley, J. W., & Goldberg, M. E. (2003). Neuronal activity in the lateral intraparietal area and spatial attention. Science, 299, 81–86.PubMedCrossRefGoogle Scholar
  3. Chaffee, M. V., & Goldman-Rakic, P. S. (1998). Matching patterns of activity in primate prefrontal area 8a and parietal area 7ip neurons during a spatial working memory task. Journal of Neurophysiology, 79, 2919–2940.Google Scholar
  4. Chun, M. M., & Potter, M. C. (1995). A two-stage model for multiple target detection in rapid serial visual presentation. Journal of Experimental Psychology: Human Perception & Performance, 21, 109–127.CrossRefGoogle Scholar
  5. Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral & Brain Sciences, 24, 87–185.CrossRefGoogle Scholar
  6. Duncan, J. (1984). Selective attention and the organization of visual information. Journal of Experimental Psychology: General, 113, 501–517.CrossRefGoogle Scholar
  7. Gegenfurtner, K. R., & Sperling, G. (1993). Information transfer in iconic memory experiments. Journal of Experimental Psychology: Human Perception & Performance, 19, 845–866.CrossRefGoogle Scholar
  8. Irwin, D. E., & Andrews, R. V. (1996). Integration and accumulation of information across saccadic eye movements. In T. Inui & J. L. McClelland (Eds.), Attention and performance XVI: Information integration in perception and communication (pp. 125–155). Cambridge, MA: MIT Press, Bradford Books.Google Scholar
  9. Kristjansson, A. (2006a). Simultaneous priming along multiple dimensions in a visual search task. Vision Research, 46, 2554–2570.PubMedCrossRefGoogle Scholar
  10. Kristjansson, A. (2006b). Surface assignment modulates object formation for visual short-term memory. Perception, 35, 865–881.PubMedCrossRefGoogle Scholar
  11. Loftus, G. R., & Loftus, E. F. (1988). Essence of statistics (2nd ed.). New York: Random House.Google Scholar
  12. Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390, 279–281.PubMedCrossRefGoogle Scholar
  13. Maljkovic, V., & Nakayama, K. (1994). Priming of pop-out: I. Role of features. Memory & Cognition, 22, 657–672.Google Scholar
  14. McCollough, A. W., Machizawa, M. G., & Vogel, E. K. (2007). Electrophysiological measures of maintaining representations in visual working memory. Cerebral Cortex, 43, 77–94.Google Scholar
  15. Miller, E. K., & Desimone, R. (1991). A neural mechanism for working and recognition memory in inferior temporal cortex. Science, 254, 1377–1379.PubMedCrossRefGoogle Scholar
  16. Miller, E. K., Erickson, C. A., & Desimone, R. (1996). Neural mechanisms of visual working memory in prefrontal cortex of the macaque. Journal of Neuroscience, 16, 5154–5167.PubMedGoogle Scholar
  17. Miller, E. K., Li, L., & Desimone, R. (1993). Activity of neurons in anterior inferior temporal cortex during a short-term memory task. Journal of Neuroscience, 13, 1460–1478.PubMedGoogle Scholar
  18. O’Craven, K. M., Downing, P. E., & Kanwisher, N. (1999). fMRI evidence for objects as the units of attentional selection. Nature, 401, 584–587.PubMedCrossRefGoogle Scholar
  19. Pashler, H. (1988). Familiarity and visual change detection. Perception & Psychophysics, 44, 369–378.Google Scholar
  20. Phillips, W. A. (1974). On the distinction between sensory storage and short-term visual memory. Perception & Psychophysics, 16, 283–290.Google Scholar
  21. Potter, M. C. (1976). Short-term conceptual memory for pictures. Journal of Experimental Psychology: Human Learning & Memory, 2, 509–522.CrossRefGoogle Scholar
  22. Rainer, G., Asaad, W. F., & Miller, E. K. (1998). Selective representation of relevant information by neurons in the primate prefrontal cortex. Nature, 393, 577–579.PubMedCrossRefGoogle Scholar
  23. Rao, S. C., Rainer, G., & Miller, E. K. (1997). Integration of what and where in the primate prefrontal cortex. Science, 276, 821–824.PubMedCrossRefGoogle Scholar
  24. Schmidt, B. K., Vogel, E. K., Woodman, G. F., & Luck, S. J. (2002). Voluntary and automatic attentional control of visual working memory. Perception & Psychophysics, 64, 754–763.CrossRefGoogle Scholar
  25. Sereno, A. B., & Amador, S. C. (2006). Attention and memory-related responses of neurons in the lateral intraparietal area during spatial and shape-delayed match-to-sample tasks. Journal of Neurophysiology, 95, 1078–1098.PubMedCrossRefGoogle Scholar
  26. Sperling, G. (1960). The information available in brief visual presentations. Psychological Monographs, 74 (Whole No. 498).Google Scholar
  27. Stefurak, D. L., & Boynton, R. M. (1986). Independence of memory for categorically different colors and shapes. Perception & Psychophysics, 39, 164–174.Google Scholar
  28. Vecera, S. P., & Farah, M. J. (1994). Does visual attention select objects or locations? Journal of Experimental Psychology: General, 123, 146–160.CrossRefGoogle Scholar
  29. Vogel, E. K., Luck, S. J., & Shapiro, K. L. (1998). Electrophysiological evidence for a postperceptual locus of suppression during the attentional blink. Journal of Experimental Psychology: Human Perception & Performance, 24, 1656–1674.CrossRefGoogle Scholar
  30. Vogel, E. K., & Machizawa, M. G. (2004). Neural activity predicts individual differences in visual working memory capacity. Nature, 428, 748–751.PubMedCrossRefGoogle Scholar
  31. Vogel, E. K., McCollough, A. W., & Machizawa, M. G. (2005). Neural measures reveal individual differences in controlling access to working memory. Nature, 438, 500–503.PubMedCrossRefGoogle Scholar
  32. Vogel, E. K., Woodman, G. F., & Luck, S. J. (2001). Storage of features, conjunctions, and objects in visual working memory. Journal of Experimental Psychology: Human Perception & Performance, 27, 92–114.CrossRefGoogle Scholar
  33. Vogel, E. K., Woodman, G. F., & Luck, S. J. (2006). The time course of consolidation in visual working memory. Journal of Experimental Psychology: Human Perception & Performance, 32, 1436–1451.CrossRefGoogle Scholar
  34. Wheeler, M., & Treisman, A. M. (2002). Binding in short-term visual memory. Journal of Experimental Psychology: General, 131, 48–64.CrossRefGoogle Scholar
  35. Woodman, G. F., & Vogel, E. K. (2005). Fractionating working memory: Encoding and maintenance are independent processes. Psychological Science, 16, 106–113.PubMedCrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2008

Authors and Affiliations

  1. 1.Department of PsychologyVanderbilt UniversityNashville
  2. 2.University of OregonEugene

Personalised recommendations